
STUDY MATERIAL FOR BCA
RDBMS

SEMESTER - V, ACADEMIC YEAR 2020-2021

Page 1 of 67

UNIT CONTENT PAGE Nr

I INTRODUCTION 02

II CONSTRAINTS IN ORACLE 14

III JOINS 26

IV FUNDAMENTALS OF PL/SQL 36

V EXCEPTION 52

STUDY MATERIAL FOR BCA
RDBMS

SEMESTER - V, ACADEMIC YEAR 2020-2021

Page 2 of 67

n

DEFINITIONS
ATTRIBUTE (COLUMN):

UNIT - I
INTRODUCTION

It Represents a Particular Characteristic of aparticular entity. E.x. Rollno, Name, Age of a
Student.

ENTITY (ROW):
It represents a record/an instance of aparticular entity.

CELL:
It represents value/data item of an attribute of arecord.

ENTITY SET (TABLE):
It is a collection of multiple entities/records/instance/rows. It is a 2-dstructure which is

composed of rows and columns where each column represents a particular characteristic and
each row represents a record of a particular entity.

DATABASE:
It is a collection of tables related toparticular subject.

DATABASE MANAGEMENT SYSTEM(DBMS):
It is software (system)

manner. It allows the user to
which helps the user to manage thedatabase in an efficient
select, insert, update and delete records in various tables. It

provides various types of commands to perform various types of operations. it also allows user
to create views , procedures a d so many other things so that it becomes quite easy for the
user tohandle the database. It is basically of three types:

 Relational (RDMBS),
 Hierarchical,
 Network.

RELATIONAL DATABASE MANAGEMENT SYSTEM(RDBMS):

It is a type of DBMS in the concept of relations is used .A relation can be in between
attributes of a single entity or a relation can be in between two or more than entities bound by
a common column. Oracle is also a RDBMS

SQL(STRUCTURED QUERY LANGUAGE):
It is a query language which provides various types of queries to perform various tasks.

Three types of SQL queries are as follows:

DDL (DATA DEFINITION LANGUAGE):
This type of query allows us to create and alter various objects like tables and views. e.x,

create table, create view, alter table,alter view etc.
DML (data manipulation language)

STUDY MATERIAL FOR BCA
RDBMS

SEMESTER - V, ACADEMIC YEAR 2020-2021

Page 3 of 67

s

This type of query allows us to select , insert , update and delete data from various
tables.

DCL (DATA CONTROL LANGUAGE):
This type of queryallows to assign and revoke permissions from

operations on various objects like table and views. e.x, grant, revoke

user for various

DATA TYPES IN ORACLE:
VARCHAR2 (SIZE)/VARCHAR (SIZE):

This data type is used to store variable length alphanumeric data. no of character cannot
exceed the specified size. if we enter less no of characters than specified
nothappened to the right of string. Its value is feeded inside single quotes.

size, spaces are

CHAR(SIZE):
This data type is used to store fixed length alphanumeric data. No of character cannot

exceed the specified size. If we enter less no of characters thanspecified
appended to the right of string. Its value is feeded inside single quotes

size, spaces are

NUMBER(P,S):
This data type allows us to store numeric values. Precision(p) allows to specify maximum

digits within a number. scale(s) allows to specify digits afterdecimal point. if value of scale is not
mentioned , then its default value is 0. if value of precision is not mentioned ,then its default
value is 38. maximum number of digits allowed in a number is 38.4.

LONG:
This data type allows us to store variable length string up to 2GB.

DATE:
This data type allows u

to store date in formatdd-mm-yy. It’s value is feeded inside

Single quotes.

RAW:
This data type is used to store binary data such as imagesupto 255 bytes.

LONG RAW:
This data type is used to store binary data such as images up to 2GB.

STUDY MATERIAL FOR BCA
RDBMS

SEMESTER - V, ACADEMIC YEAR 2020-2021

Page 4 of 67

C

u

VARIOUS COMMONLY USED DDL COMMANDS USED IN ORACLE:
CREATE TABLE:

This command is used to create tableby using this command, we specify name of
thetable, name of the columns and data type of the columns.

SYNTAX:
CREATE TABLE tablename (Columnname1 datatype,columnname2

columnnamedatatype)

EXAMPLE:
CREATE TABLE student (rollno number(3) , name varchar2(20) ,age n

number(4,2));

datatype , . ,

mber(3) , marks

ALTER TABLE:
This command is used to alter the structure of a table. We can add new columns by

using alter table command.

SYNTAX:
ALTER TABLE tablename ADD (columname1 datatype , columnname2 datatype,..,

column namedatatype)
EXAMPLE:
ALTER TABLE student ADD (address varchar2(10)). WE CAN ALSO MODIFY
TYPES BY USING ALTER TABLE COMMAND.

COLUMNS DATA

SYNTAX :
-ALTER TABLE tablename MODIFY (columname1 datatype ,column name2data type ,.., column
namedatatype)
EXAMPLE :
ALTER TABLE student MODIFY (address varchar2(20))

LIMITATIONS OF ALTER TABLE OMMAND:
Table name cannot be changed. Column name cannot be changed. Column cannot be

dropped (deleted). Size of column cannot be changed if table data exists.

VARIOUS COMMONLY USED DML COMMANDS USED IN ORACLE:
INSERT:
This command is used to insert data in tables.

(a) Values are feeded in the same order in which columnswere created
command.

SYNTAX:
INSERT INTO tablename VALUES(value1,value2,..,valuen);

in create table

EXAMPLE:
INSERT INTO student VALUES(1,'amit', 21 , 88);

STUDY MATERIAL FOR BCA
RDBMS

SEMESTER - V, ACADEMIC YEAR 2020-2021

Page 5 of 67

m

F

m

7

To feed values in limited columns, we must mentionfield names:

SYNTAX:
INSERT INTO student(columnname1,column name2, Columnname N) VALUES(value1, value2 , ..
value N)

EXAMPLE
i. INSERT INTO student(rollno,name) VALUES(3, 'raj')
ii. INSERT INTO student(rollno,age,marks) VALUES(5, 25,65)

To feed values in all the columns, then mentioning column names is optional.

EXAMPLE
i. INSERT INTO student(rollno,name,age,marks) VALUES(4, 'aryan',24, 4)
ii. INSERT INTO student VALUES(4, 'aryan',24,74)

UPDATE
This command is used

to modify table records.where clause is used to specify the

criteria of records tobe updated.

SYNTAX
UPDATE tablename SET columnname1=value1,columnname2=value2,

columnnamen=value n where condition

EXMPLE
UPDATE student SET na
UPDATE student SET na

e='submit' WHERE rollno=5
e='Aman', age=28, marks=55 WHERE rollno=3

UPDATE student SET age=age+2 WHERE rollno=1

IF WHERE CLAUSE IS NOT SPECI

SYNTAX
UPDATE tablename

columnnamen=valuen

IED , THEN ALL THE RECORDS AREUPDATED.

SET column name1=value1,columnname2=value2,

EXAMPLE
UPDATE student SET age=age+2

DELETE
This command is used

criteria of records tobe deleted.
to delete table records.Where clause is used to specify the

SYNTAX
DELETE FROM tablename WHERE condition

STUDY MATERIAL FOR BCA
RDBMS

SEMESTER - V, ACADEMIC YEAR 2020-2021

Page 6 of 67

m

e

EXAMPLE
DELETE FROM student WHERE rollno=1
IF WHERE CLAUSE IS NOT SPECIFIED , THEN ALL THE TABLERECORDS ARE DELETED

SYNTAX
DELETE FROM tablename

EXAMPLE
DELETE FROM student

SELECT
This command is used to select data from table.

SYNTAX
SELECT columnname1,columnname2,.., columnnamen FROMtablename

EXAMPLE
SELECT rollno,name,age FROM student
* IS USED TO READ DATA OF ALL THE COLUMNS.

SYNTAX
SELECT * FROM tablename

EXAMPLE
SELECT * FROM student
(B) WHERE CLAUSE IS USED TO SPECIFY THE CRITERIA OF RECORDS TO BE SELECTED.

SYNTAX
SELECT * FROM tablena

e WHERE criteria

EXAMPLE
SELECT * FROM student WHERE rollno=1
If we do not specify where clause, then all the records oftable are selected. Order by

clause is used to sort all the r cords by aparticular field. by default all records are sorted in
ascending order. we use keyword ask to sort records in descending order and keyword desk to
sort records in descending order.

SYNTAX
SELECT * FROM tablename ORDER BY columnname
SELECT * FROM tablename ORDER BY columnname [ASC/DESC]

EXAMPLE
SELECT * FROM student ORDER BY marks
SELECT * FROM student ORDER BY marks ASC
SELECT * FROM student ORDER BY marks DESC
(E) WHERE AND ORDER BY CLAUSE CAN ALSO BE USED TOGETHER.

STUDY MATERIAL FOR BCA
RDBMS

SEMESTER - V, ACADEMIC YEAR 2020-2021

Page 7 of 67

SYNTAX
SELECT * FROM tablename WHERE criteria ORDER BY columnname

EXAMPLE
SELECT * FROM student WHERE rollno>1 ORDER BY marks
DISTINCT CLAUSE IS USED TO READ ONLY DISTINCT VALUES.

SYNTAX
SELECT DISTINCT column name FROM table name

EXAMPLE
SELECT DISTINCT name FROM student

VARIOUS COMMONLY USED DCL COMMANDS USED INORACLE (SECURITY MANAGEMENT IN
ORACLE) :-

EXAMPLE
(To perform DML operations on the table createdby another user):-

1. SELECT * FROM system.student
2. INSERT INTO system.student VALUES(9,'Z')
3.DELETE FROM system.student WHERE roll no>10
4.UPDATEsystem.student SET name='Ankit' WHERE roll no=9

GRANT COMMAND:
Grant command helps us to allow one user to access objects of another user variousprivileges
which can be given to another user:-

SELECT , INSERT , UPDATE , DELETE , ALTER , INDEX

EXAMPLE
To grant only one privilege to another user):-

GRANT UPDATE ON student TO Scott

EXAMPLE
(To grant multiple privileges to another user):-
GRANT SELECT, INSERT ON student TO Scott

EXAMPLE(To grant all privileges to another user):-

GRANT ALL ON student TO ScottEXAMPLE(TO GRANT PRIVILEGES TO ANOTHER USER AND ALSO
ALLOWING HIM TO GRANT SAME PRIVILEGES ON SAME OBJECT TO SOME OTHER USERS):

GRANT ALL ON student TO Scott WITH GRANT OPTION

STUDY MATERIAL FOR BCA
RDBMS

SEMESTER - V, ACADEMIC YEAR 2020-2021

Page 8 of 67

L

REVOKE COMMAND:
Revoke command helps us to snatch permissions from oneuser to access objects of

another user.

EXAMPLE(TO REVOKE ONLY ONE PRIVILEGE FROM ANOTHER USER):

REVOKE UPDATE ON student FROM Scott

EXAMPLE(TO REVOKE MULTIPLE PRIVILEGES FROM ANOTHERUSER):-
REVOKE SELECT, INSERT ON student FROM Scott

EXAMPLE(TO REVOKE ALL PRIVILEGES FROM ANOTHER USER):-

REVOKE ALL ON student FROM Scott

SOME COMMONLY USED COMMANDS:
TO SEE THE LIST OF ALLTHE TABLE, A USER HAS CREATED:
SELECT * FROM TAB

TO SEE THE STRUCTURE OF A TABLE:
DESCRIBE table name

TO CHANGE THE NAME OF A TABLE:
RENAME oldname TO newname

TO DELETE A TABLE:
DROP TABLE table name

TO PERFORM A MATHEMATICA
SELECT 2*7 FROM DUAL

TO SEE CURRENT DATE:
SELECT SYSDATE FROM DUAL

CALCULATION:-

OPERATORS IN ORACLE:-
MATHEMATICAL OPERATORS:-
/ - DIVISION* - MULTIPLICATION+ - ADDITION- - SUBSTRACTIONEXAMPLE:-

A.SELECT 2*6 FROM DUAL
B.SELECT AGE , AGE+2 FROM STUDENT

RELATIONAL OPERATORS :-
> - GREATER THAN>= - GREATER THAN OR EQUAL TO< - LESS THAN<= - LESS THAN OR EQUAL
TO= - EQUAL TO<> - NOT EQUAL TO

STUDY MATERIAL FOR BCA
RDBMS

SEMESTER - V, ACADEMIC YEAR 2020-2021

Page 9 of 67

LOGICAL OPERATORS:-
AND:-
This operator returns true when both the conditionspecified with and operator returns true. if
any one of thecondition specified evaluates to false , then and operatorreturns false.

EXAPMLE:-
SELECT * FROM STUDENT WHERE ROLL NO>2 AND ROLL NO<5
UPDATE STUDENT SET AGE=AGE+2 WHERE ROLL NO>2 ANDROLL NO<5
OR:-this operator returns true when any one condition or both the conditions specified with or
operator returns true. if both the conditions specified evaluate to false ,then or operator
returns false.

EXAPMLE:-
A.SELECT * FROM STUDENT WHERE ROLL NO=2 OR ROLL NO=5
B.UPDATE STUDENT SET AGE=AGE+2 WHERE ROLL NO=2 ORROLL NO=5
NOT:-This operator negates the result of an expression.
Example:-

select * from student where not(roll no=2 or roll no=5)
update student set age=age+2 where not(roll no=2 or roll no=5)
between: This operator returns true if a value falls inbetween minimum value and maximum
value.

SYNTAX:-
SELECT * FROM table name WHERE column name BETWEEN min.valueANDmax.value

EXAMPLE:-
Select * from student where roll no between 2 and 4

Not between:-

This operator returns true if a value doesnot fall in between minimum value and maximum
value.

SYNTAX:-
SELECT * FROM table name WHERE column name NOT BETWEEN minvalueANDmaxvalue

EXAMPLE:-
SELECT * FROM student WHERE roll no NOT BETWEEN 2 AND 4
IN:-

THIS OPERATOR RETURNS TRUE IF A VALUE MATCHES TO ANY OF MULTIPLE VALUES SPECIFIED
WITH IN OPERATOR.

STUDY MATERIAL FOR BCA
RDBMS

SEMESTER - V, ACADEMIC YEAR 2020-2021

Page 10 of 67

E

U

W

SYNTAX:-
SELECT * FROM table name WHERE column name IN (value1, value2,.,valuen)

EXAMPLE:-SELECT * FROM student WHERE name IN ('aman','amit','sumit')
NOT IN:-
THIS OPERATOR RETURNS TRUE IF A VALUE DOES NOT MATCH TO ANY OF MULTIPLE VALUES
SPECIFIED WITH NOT INOPERATOR.

SYNTAX:-
SELECT * FROM table name WHERE column name NOT IN (value1, value2,.,valuen)

EXAMPLE:-SELECT * FROM student WHERE name NOT IN ('Aman', 'Amit', 'Sumit')
LIKE:-
This operator returns true if a value matches to aspecified pattern of a string.
with likeoperator are :-

ildcards used

% - IT DENOTES TO ZERO OR MORE CHARACTERS._ - IT DENOTES TO ONE CHARACTER.

SYNTAX:-
SELECT * FROM table name WHERE column name LIKE pattern

EXAMPLE:-
1. SELECT * FROM student WHERE name LIKE 'a%'
2.SELECT * FROM student WHERE name LIKE 'a%n'
3.SELECT * FROM student WHERE name LIKE 'a '

ORACLE IN-BUILT FUNCTIONS:-
ORACLE INBUILT FUNCTIONS SERVE THE PURPOSE OFMANIPULATING DATA AND RETURN A
VALUE.
ORACLE INBUILTFUNCTIONS ARE OF TWO TYPES:-

AGGREGATE FUNCTIONS/GRO P FUNCTIONS:-

These types of functions act on a set of values and return a single value. Some of the examples
of aggregatefunctions are as follows:-

NUMERIC FUNCTIONS:-
A.SUM:-
THIS FUNCTION FINDS THE SUM OF A SET OF VALUES

EXAMPLE:-
SELECT SUM(marks) FROM studentB.
B.COUNT:-
THIS FUNCTION COUNTS A SET OF VALUES

EXAMPLE:- SELECT COUNT(marks) FROM student

STUDY MATERIAL FOR BCA
RDBMS

SEMESTER - V, ACADEMIC YEAR 2020-2021

Page 11 of 67

)

D

C. AVG:-
THIS FUNCTION FINDS THE AVERAGE OF A SET OF VALUES
EXAMPLE:-
SELECT AVG(marks) FROM studentD.

MAX:-
THIS FUNCTION FINDS THE MAXIMUM VALUE FROM A SET OF VALUES

EXAMPLE:- SELECT MAX(marks) FROM studentE.
MIN:-
THIS FUNCTION FINDS THE MINIMUM VALUE FROM A SET OFVALUES

EXAMPLE:-
SELECT MIN(marks) FROM student

NOTE:-
MULTIPLE FUNCTIONS CAN BE USED IN A SINGLE QUERY.

EXAMPLE :-
SELECT SUM(marks) AS SUM_MARKS, COUNT(marks) "COUNT",AVG(marks) ,MAX(marks) ,
MIN(marks) FROM student

2. SCALAR FUNCTIONS/SINGLE ROW FUNCTIONS:-
These type of functions act on a single value and return asingle value.
some of the examples of scalar functionsare as follows:-

Numeric functions:-
A. POWER:-
THIS FUNCTION IS USED TO FIN

THE POWER OF ANUMBER.

EXAMPLE:-i. SELECT POWER(5,3) FROM DUAL
ii. SELECT POWER(roll no,2) FROM studentB.
B.ABS:-
This function always returns a positive value

EXAMPLE:-
i.SELECT age , ABS(age) FROM studentC.
C.ROUND:-

This function rounds off a number uptospecified decimal points.

EXAMPLE:-
i. SELECT ROUND(53.56182,2) FROM DUAL
ii. SELECT ROUND(marks,2) FROM studentD.
D.SQRT:-
This function finds square root of a number.

EXAMPLE:-

STUDY MATERIAL FOR BCA
RDBMS

SEMESTER - V, ACADEMIC YEAR 2020-2021

Page 12 of 67

i. SELECT SQRT(64) FROM DUAL
ii. SELECT SQRT(marks) FROM student

3. STRING FUNCTIONS:-
LOWER:-
This function converts all the characters of astring to lower case.

EXAMPLE:-
SELECT NAME, LOWER(name) FROM studentB.
UPPER:-
THIS FUNCTION CONVERTS ALL THE CHARACTERS OF ASTRING TO UPPER CASE.

EXAMPLE:-
SELECT NAME, UPPER(name) FROM studentC.
INITCAP:-
This function converts first character ofstring to uppercase and the remaining characters of a
string to lowercase.

EXAMPLE:-
SELECT NAME, INITCAP(name) FROM studentD.
LENGTH:-
THIS FUNCTION RETURNS TOTAL NO OF CHARACTERSIN A STRING

EXAMPLE:-
SELECT NAME, LENGTH(name) FROM studentE.
LTRIM:-
This removes a particular character from the left part of a string. If the character to be removed
is not specified , then by default , it removes spaces

EXAMPLE:-
i. SELECT NAME , LTRIM(NAME , 'a') FROM student
ii. SELECT LTRIM('aaaaabcdeaa' , 'a') FROM dualiii.SELECT LTRIM(' ABC ') FROM DUALF.

RTRIM:-
This removes a particular character from the right part of a string. if the character to be
removed is not specified , then by default , it removes spaces.

EXAMPLE:-
i.SELECT name , RTRIM(name , 'a') FROM student
ii.SELECT RTRIM('aaaaabcdeaa' , 'a') FROM dual
iii.SELECT RTRIM(' abc ') FROM DUAL

LPAD:-
This function pads the string in the left part witha character so that length of string becomes
equal to specified no of alphabets. by default, string is padded withspaces.

STUDY MATERIAL FOR BCA
RDBMS

SEMESTER - V, ACADEMIC YEAR 2020-2021

Page 13 of 67

EXAMPLE:-
i.SELECT LPAD('abcdef',10,'*') FROM DUAL
ii.SELECT LPAD('abcdef',10) FROM DUAL
iii.SELECT LPAD(name,10,'-') FROM studentH.

RPAD:-
This function pads the string in right part with a character so that length of string becomes
equal to specified no of alphabets. by default, string is padded with spaces.

EXAMPLE:-
i.SELECT RPAD('abcdef',10,'*') FROM DUAL
ii.SELECT RPAD('abcdef',10) FROM DUAL
iii. SELECT RPAD(name,10,'-') FROM studentI.

SUBSTR:-
This function returns a part of string(substring). We also mention starting position of substring
and length of substring.

EXAMPLE:-
SELECT name,SUBSTR(name,2,3) FROM student

STUDY MATERIAL FOR BCA
RDBMS

SEMESTER - V, ACADEMIC YEAR 2020-2021

Page 14 of 67

CONSTRAINTS IN ORACLE :-

UNIT - II
CONSTRAINTS IN ORACLE

Constraints are limitations or validation rules applied on various columns.
Not null:-
by applying this constraint on a column, user cannot enter null values within a column. if a user
tries to enter null value in that column , oracle displays error message.

EXAMPLE(to apply NOT NULL constraint on a column):-

CREATE TABLE student1 (roll noNUMBER(4) NOT NULL , nameVARCHAR2(20))

CHECK :-
By applying this constraint on a column , we can limit the range of values or we can limit the
domain of acolumn.

Ex(to apply CHECK constraint at COLUMN LEVEL):-

CREATE TABLE student2 (roll no NUMBER(3) CHECK (roll no BETWEEN 1AND 50) , city
VARCHAR2(20) CHECK (city IN ('sirsa' , 'hisar' , 'rohtak')))

EXAMPLE(to apply CHECK constraint at TABLE LEVEL):-
CREATE TABLE student3 (roll no NUMBER(3), city VARCHAR2(20) ,CHECK (roll no BETWEEN 1
AND 50) , CHECK (city IN ('sirsa' , 'hisar' ,'rohtak')))

SPECIFYING DEFAULT VALUES OF A COLUMN:-

EXAMPLE:-
CREATE TABLE student9 (roll noNUMBER(3) , city VARCHAR2(20)DEFAULT 'sirsa');

UNIQUE CONSTRAINT :-
By applying this constraint on a column , User cannot enter duplicate values in a column. Only
unique values are allowed. If a user tries to enter duplicate values inthat column, oracle
displays error message.

EXAMPLE(to apply UNIQUE CONSTRAINT at COLUMN LEVEL):-

CREATE TABLE student4 (roll no NUMBER(3) UNIQUE , cityVARCHAR2(20))

PRIMARY KEY CONSTRAINT:-

EXAMPLE(TO ADD PRIMARY KEY USING ALTER TABLE COMMAND):-
ALTER TABLE student7 ADD PRIMARY KEY(roll no)

STUDY MATERIAL FOR BCA
RDBMS

SEMESTER - V, ACADEMIC YEAR 2020-2021

Page 15 of 67

v

e

EXAMPLE(TO DELETE PRIMARY KEY USING ALTER TABLECOMMAND):-
ALTER TABLE student7 DROP PRIMARY KEY

EXAMPLE(To create primary key using create table command and giving primary key constraint
a name):-

CREATE TABLE student8 (roll noNUMBER(3) CONSTRAINT pk_student8 PRIMARY KEY , name
VARCHAR2(20))

EXAMPLE(TO CREATE PRIMARY KEY USING ALTER TABLE COMMAND AND GIVING PRIMARY KEY
CONSTRAINT A NAME):-

ALTER TABLE student7 ADD CONSTRAINT pk_student7 PRIMARYKEY(roll no)

EXAMPLE(TO DELETE PRIMARY KEY USING ALTER TABLE COMMANDBY SPECIFYING ITS
CONSTRAINT NAME):-

ALTER TABLE student8 DROP CONSTRAINT pk_student8

FOREIGN KEY CONSTRAINT:-
A foreign key is a column whose values are derived from primary key or unique key of

other table. The table in which primary key is defined is known as primary table or master table
or parent table. The table in which foreignkey is defined is known as foreign table or detail table
or child table.

Some of the features of primary key/foreign key relationship:-
1. Primary key cannot accept duplicate values where as foreign key can accept.
2. Primary key cannot accept null values whereas foreignkey can accept
3. Values entered in foreign key of detail table must bepresent in primary key of primary

table otherwise whene
displays error.

4. To perform update or d

er user tries to perform insert or update operation, oracle

lete operations on primary key of master table, corresponding
values must not bepresent in foreign key of foreign table, otherwise oracle display error.

5. In references clause, we need to mention only name of the parent table. Primary key of
primary table is automatically attached to foreign key of foreign table.

6. If on delete cascade option has been set , then delete operation in master table will
trigger delete operation inchild table.

EXAMPLE (To create foreign key by referring primarytable):-
CREATE TABLE fees7 (roll noNUMBER(3) REFERENCES student7, feesNUMBER(6,2))

EXAMPLE(To create foreign key by referring primary table, also specify foreign key constraint
name):-
CREATE TABLE fees7 (roll noNUMBER(3) CONSTRAINT fk_fees7REFERENCES student7, fees
NUMBER(6,2))

STUDY MATERIAL FOR BCA
RDBMS

SEMESTER - V, ACADEMIC YEAR 2020-2021

Page 16 of 67

p
n

y

n

EXAMPLE(To delete foreign key using alter table commandby specifying foreign key constraint
name):-
ALTER TABLE fees7 DROP CONSTRAINT fk_fees7

EXAMPLE(To create foreign key using alter table commandby referring primary table , also
specify foreign keyconstraint name):-
ALTER TABLE fees7 ADD FOREIGN KEY(roll no) REFERENCES student7

EXAMPLE (To create foreign key by referring primary table, also setting o
option):-

delete cascade

CREATE TABLE fees7 (roll noNUMBER(3) CONSTRAINT fk_fees7REFERENCES student7 ON
DELETE CASCADE, fees NUMBER(6,2))

Displaying Table Information
As with most relational databases, there may come a situation where

ou need to view

the underlying metadata and look through the actual table list and ownership of your database.
Thankfully, there are multiple ways to perform this relatively simple task in Oracle, so we’ll
briefly explore each option below to find which best suits your needs.

What are Oracle Data Dictionaries?
A data dictionary in Oracle is a collection of read-only tables that provide useful

information about the database including schemas, users, privileges, and even auditing data.
The values in these stored dictionaries are updated automatically by Oracle anytime a
statement is executed on the server that modifies data.

From there, the read-o

table, which as we’ll see below

ly dictionaries can be read and queried just like any standard

rovides some very useful functionality.

Viewing Tables Owned by Current user
At the most basic level, you may wish to view a list of all the tables owned by the

current Oracle user. This can be accomplished with a simple SELECT query on the USER_TABLES
data dictionary.

Once connected to Oracle, issue this statement:
SELECT
Table_name, owner
FROM
User_tables
ORDER BY
owner, table_name

Viewing Tables Accessible by Current User

In a situation where you’re only interested in what tables the current Oracle user has
access to, regardless of ownership, you’ll use the ALL_TABLES data dictionary instead.

STUDY MATERIAL FOR BCA
RDBMS

SEMESTER - V, ACADEMIC YEAR 2020-2021

Page 17 of 67

w

SELECT
table_name, owner

FROM
Alltables

ORDER BY
owner, table_name

It’s likely that this query will return far more results than you are interested in since

you’re viewing everything even remotely accessible to the user, so you may
query by specifying an appropriate owner, like so:

ish to limit your

SELECT
table_name, owner

FROM
all_tables

WHERE
owner='schema_name'

ORDER BY
owner, table_name

Viewing All Tables
Lastly, when you absolutely need to view every table in the system, look no further than the
great and
powerful DBA_TABLES data dictionary.

SELECT
table_name, owner

FROM
dba_tables

WHERE
owner='schema_name'

ORDER BY
owner, table_name

It is important to note that this final DBA_TABLES dictionary may require user privileges

beyond what the current user has. If necessary, you may need to be granted the SELECT ANY

STUDY MATERIAL FOR BCA
RDBMS

SEMESTER - V, ACADEMIC YEAR 2020-2021

Page 18 of 67

DICTIONARY privilege or the SELECT_CATALOG_ROLE role. More information on granting these
privileges can be found in the official documentation.

Altering an Existing Table
The Oracle ALTER TABLE statement to add a column, modifies a column, drop a column,

rename a column or rename a table (with syntax, examples and practice exercises).

Description
The Oracle ALTER TABLE statement is used to add, modify, or drop/delete columns in a

table. The Oracle ALTER TABLE statement is also used to rename a table.

Add column in table

Syntax
To ADD A COLUMN in a table, the Oracle ALTER TABLE syntax is:
ALTER TABLE table_name

ADD column_namecolumn_definition;

Example
ALTER TABLE customers

ADD customer_namevarchar2(45);

This Oracle ALTER TABLE example will add a column called customer_name to the
customers table that is a data type of varchar2(45).

In a more complicated example, you could use the ALTER TABLE statement to add a new
column that also has a default value:

ALTER TABLE customers
ADD city varchar2(40) DEFAULT 'Seattle';

In this example, the column called city has been added to the customers table with a
data type of varchar2(40) and a default value of 'Seattle'.
Add multiple columns in table

Syntax
To ADD MULTIPLE COLUMNS to an existing table, the Oracle ALTER TABLE syntax is:
ALTER TABLE table_name
ADD (column_1 column_definition,
column_2 column_definition,

...column_ncolumn_definition);

Example
Let's look at an example that shows how to add multiple columns in an Oracle table

using the ALTER TABLE statement.

STUDY MATERIAL FOR BCA
RDBMS

SEMESTER - V, ACADEMIC YEAR 2020-2021

Page 19 of 67

E

For example:
ALTER TABLE customers
ADD (customer_namevarchar2(45),
city varchar2(40) DEFAULT 'Seattle');

This Oracle ALTER TABLE example will add two columns, customer_name as a
varchar2(45) field and city as
customers table.
Modify column in table

a varchar2(40) field with a default value of 'Seattle' to the

Syntax
To MODIFY A COLUMN in an existing table, the Oracle ALTER TABLE syntax is:

ALTER TABLE table_name
MODIFY column_namecolumn_type;

Example
Let's look at an example that shows how to modify a column in an Oracle table using the

ALTER TABLE statement.

For example:
ALTER TABLE customers
MODIFY customer_namevarchar2(100) NOT NULL;

This Oracle ALTER TABLE example will modify the column called customer_name to be a
data type of varchar2(100) and force the column to not allow null values.

In a more complicated example, you could use the ALTER TABLE statement to add a
default value as well as modify the column definition:

ALTER TABLE customers
MODIFY city varchar2(75) DEFAULT 'Seattle' NOT NULL;

In this example, the ALT R TABLE statement would modify the column called city to be a
data type of varchar2(75), the default value would be set to 'Seattle' and the column would be
set to not allow null values.
Modify Multiple columns in table

Syntax
To MODIFY MULTIPLE COLUMNS in an existing table, the Oracle ALTER TABLE syntax is:
ALTER TABLE table_name
MODIFY (column_1 column_type,
column_2 column_type,

...
column_ncolumn_type);

Example

STUDY MATERIAL FOR BCA
RDBMS

SEMESTER - V, ACADEMIC YEAR 2020-2021

Page 20 of 67

Let's look at an example that shows how to modify multiple columns in an Oracle table using
the ALTER TABLE statement.

For example:
ALTER TABLE customers
MODIFY (customer_namevarchar2(100) NOT NULL,
city varchar2(75) DEFAULT 'Seattle' NOT NULL);

This Oracle ALTER TABLE example will modify both the customer_name and city
columns. The customer_name column will be set to a varchar2(100) data type and not allow
null values. The city column will be set to a varchar2(75) data type, its default value will be set
to 'Seattle', and the column will not allow null values.
Drop column in table

Syntax
To DROP A COLUMN in an existing table, the Oracle ALTER TABLE syntax is:
ALTER TABLE table_name
DROP COLUMN column_name;

Example
Let's look at an example that shows how to drop a column in an Oracle table using the ALTER
TABLE statement.

For example:

ALTER TABLE customers
DROP COLUMN customer_name;

This Oracle ALTER TABLE example will drop the column called customer_name from the
table called customers.
Rename column in table

Syntax
To RENAME A COLUMN in an existing table, the Oracle ALTER TABLE syntax is:

ALTER TABLE table_name
RENAME COLUMN old_name TO new_name;

Example
Let's look at an example that shows how to rename a column in an Oracle table using

the ALTER TABLE statement.

For example:
ALTER TABLE customers
RENAME COLUMN customer_name TO cname;
This Oracle ALTER TABLE example will rename the column called customer_name to cname.
Rename table

STUDY MATERIAL FOR BCA
RDBMS

SEMESTER - V, ACADEMIC YEAR 2020-2021

Page 21 of 67

Syntax
To RENAME A TABLE, the Oracle ALTER TABLE syntax is:
ALTER TABLE table_name
RENAME TO new_table_name;

Example
Let's look at an example that shows how to rename a table in Oracle using the ALTER

TABLE statement.

For example:
ALTER TABLE customers
RENAME TO contacts;
This Oracle ALTER TABLE example will rename the customers table to contacts.

Practice Exercise #1:
Based on the departments table below, rename the departments table to depts.
CREATE TABLE departments
(department_id number(10) NOT NULL,
department_namevarchar2(50) NOT NULL,
CONSTRAINT departments_pk PRIMARY KEY (department_id)
);
Solution for Practice Exercise #1:
The following Oracle ALTER TABLE statement would rename the departments table to depts:
ALTER TABLE departments
RENAME TO depts;

Practice Exercise #2:
Based on the employees table below, add a column called bonus that is a number(6) data type.
CREATE TABLE employees
(employee_number number(10) NOT NULL,
employee_namevarchar2(50) NOT NULL,
department_id number(10),
CONSTRAINT employees_pk PRIMARY KEY (employee_number)
);
Solution for Practice Exercise #2:
The following Oracle ALTER TABLE statement would add a bonus column to the employees
table:

ALTER TABLE employees
ADD bonus number(6);

Practice Exercise #3:
Based on the customers table below, add two columns - one column called contact_name that
is a varchar2(50) datatype and one column called last_contacted that is a date datatype.

STUDY MATERIAL FOR BCA
RDBMS

SEMESTER - V, ACADEMIC YEAR 2020-2021

Page 22 of 67

CREATE TABLE customers
(customer_id number(10) NOT NULL,
customer_namevarchar2(50) NOT NULL,
address varchar2(50),
city varchar2(50),
state varchar2(25),
zip_codevarchar2(10),
CONSTRAINT customers_pk PRIMARY KEY (customer_id)

);

Solution for Practice Exercise #3:
The following Oracle ALTER TABLE statement would add the contact_name and last_contacted
columns to the customers table:

ALTER TABLE customers
ADD (contact_namevarchar2(50),
last_contacted date);

Practice Exercise #4:
Based on the employees table below, change the employee_name column to a varchar2(75)
data type.

CREATE TABLE employees
(employee_number number(10) NOT NULL,
employee_namevarchar2(50) NOT NULL,
department_id number(10),
CONSTRAINT employees_pk PRIMARY KEY (employee_number)
);

Solution for Practice Exercise #4:
The following Oracle ALTER
employee_name

TABLE statement would change the datatype for the

column to varchar2(75):
ALTER TABLE employees
MODIFY employee_namevarchar2(75);
Practice Exercise #5:

Based on the customers table below, change the customer_name column to NOT allow
null values and change the state column to a varchar2(2) data type.
CREATE TABLE customers
(customer_id number(10) NOT NULL,
customer_namevarchar2(50),
address varchar2(50),
city varchar2(50),

STUDY MATERIAL FOR BCA
RDBMS

SEMESTER - V, ACADEMIC YEAR 2020-2021

Page 23 of 67

state varchar2(25),
zip_codevarchar2(10),
CONSTRAINT customers_pk PRIMARY KEY (customer_id)
);
Solution for Practice Exercise #5:

The following Oracle ALTER TABLE statement would modify the customer_name and
state columns accordingly in the customers table:

ALTER TABLE customers
MODIFY (customer_namevarchar2(50) NOT NULL,
state varchar2(2));

Practice Exercise #6:
Based on the employees table below, drop the salary column.

CREATE TABLE employees
(employee_number number(10) NOT NULL,
employee_namevarchar2(50) NOT NULL,
department_id number(10),
salary number(6),
CONSTRAINT employees_pk PRIMARY KEY (employee_number)
);
Solution for Practice Exercise #6:
The following Oracle ALTER TABLE statement would drop the salary column from the
employees table:

ALTER TABLE employees
DROP COLUMN salary;

Practice Exercise #7:
Based on the departments table below, rename the department_name column to

dept_name.

CREATE TABLE departments
(department_id number(10) NOT NULL,
department_namevarchar2(50) NOT NULL,
CONSTRAINT departments_pk PRIMARY KEY (department_id)
);

Solution for Practice Exercise #7:
The following Oracle ALTER TABLE statement would rename the department_name column to
dept_name in the departments table:
ALTER TABLE departments
RENAME COLUMN department_name TO dept_name;

STUDY MATERIAL FOR BCA
RDBMS

SEMESTER - V, ACADEMIC YEAR 2020-2021

Page 24 of 67

u

E

GROUPING:-
Grouping allows us to group records based on distinct values of a particular column.

Having clause allows usto filter summary of groups. Condition in having clause should be based
on either aggregate functions or on thecolumn by which groups have been created.

EXAMPLE(to perform grouping and using an aggregate function):-
SELECT deptno,SUM(sal) FROM EMP GROUP BY deptno

EXAMPLE(to perform grouping and using multiple aggregate function):-
SELECT deptno,SUM(sal),COUNT(sal), AVG(sal), MAX(sal),MIN(sal) FROM
deptno

MP GROUP BY

EXAMPLE(to perform grouping and using an aggregate function and to perform filtering of
groups based on same aggregate function in having clause):-
SELECT deptno,SUM(sal) FROM EMP GROUP BY deptno HAVINGSUM(sal)>9000

EXAMPLE(to perform grouping and using an aggregate function and to perform filtering of
groups based on different aggregate function in having clause):-

SELECT deptno,SUM(sal) FROM EMP GROUP BY deptno HAVINGCOUNT(sal)<6

EXAMPLE(to perform grouping and using an aggregatefunction and to perform filtering of
groups based on thecolumn by which grouping has been performed in havingclause):-
SELECT deptno,SUM(sal) FROM EMP GROUP BY deptno HAVING deptno=20

SUBQUERIES:-
A subquery is a SQL q

ery which is placed inside another sql query. the statement

containing a sub query is knownas parent statement.parent query.

EXAMPLE:-
SELECT * FROM student7 WHERE roll no IN (
SELECT roll no FROM fees7
)

SET OPERATORS

UNION/INTERSECT/MINUS CLAUSE:-
UNION:-

by using union clause . multiple queries are put together and their output is combined.
Output of union clause = records only in query 1 +records in only query 2 + a single set of
records which iscommon in both the queries.

EXAMPLE:-
SELECT roll no FROM student6 UNION SELECT roll no FROM student7

STUDY MATERIAL FOR BCA
RDBMS

SEMESTER - V, ACADEMIC YEAR 2020-2021

Page 25 of 67

INTERSECT:-
By using intersect clause. Multiple queries are puttogether and

their output is

combined. Output of intersect clause = a single set of records whichis common in both the
queries.
Example:-
Select roll no from student6 intersect select roll no from student7

Minus:-
By using union clause. Multiple queries are put togetherand their output is combined.

Output of minus clause = records in query 1 - records inquery 2(only those records are
displayed from query 1 whicharenot present in query 2)

Example:-select roll no from student6 minus select roll no from student7

STUDY MATERIAL FOR BCA
RDBMS

SEMESTER - V, ACADEMIC YEAR 2020-2021

Page 26 of 67

n

JOINS:-

UNIT – III
JOINS

Joins are used to combine the data of two or more than two tables. Joins provide a great

flexibility to the user tosee the records of multiple tables related to each other. With the help of
joins, summary from various tables caneasily be obtained.
joins are of multiple types:-

INNER JOIN:-

Inner joins are used to combine the data oftwo or more than two tables in which only
those recordsof both the tables are displayed which satisfy a specifiedconditio .

EXAMPLE:-SELECT student.rollno,name, fees.rollno,fees FROM student INNER JOIN
feesONstudent.roll no=fees.roll no

LEFT OUTER JOIN:-
Left outer joins are used to combine thedata of two or more than two tables in which all

therecords of left table are displayed and only thoserecords of right table are displayed which
satisfy aspecified condition.

EXAMPLE:-
SELECT student.rollno,name,
student.roll no=fees.roll no
RIGHT OUTER JOIN:-

fees.rollno,fees FROM student LEFT OUTER JOINfees ON

right outer joins are used to combinethe data of two or more than two tables in which all
therecords of right table are displayed and only thoserecords of left table are displayed which
satisfy aspecified condition.

EXAMPLE:-
SELECT student.rollno,name, fees.Rollno,fees FROM student RIGHT OUTERJOIN fees ON
student.roll no=fees.roll no
FULL OUTER JOIN:-
FULL OUTER JOINS ARE USED TO COMBINE THEDATA OF TWO OR MORE THAN TWO TABLES IN
WHICH ALL THERECORDS OF BOTH TABLES ARE DISPLAYED
EXAMPLE:-
SELECT student.rollno,name,
student.roll no=fees.roll no
SELF JOIN :-

fees.rollno,fees FROM student FULL OUTERJOIN fees ON

In case of joins, multiple instance of same tableare opened in memory with different alias. And
then a joinoperation is performed between those two instance ofsame table by using their
alias. So, when a table is joinedto itself is known as self-join
.
EXAMPLE:-(to display details of those employees which have amanager)

STUDY MATERIAL FOR BCA
RDBMS

SEMESTER - V, ACADEMIC YEAR 2020-2021

Page 27 of 67

b
p

s

1. SELECT emp_1.empno,emp_1.name,emp_1.mngrno,emp_2.name managerFROM employee
emp_1,employee emp_2 WHEREemp_1.mngrno=emp_2.empno

2. SELECT emp_1.empno,emp_1.name,emp_1.mngrno,emp_2.name managerFROM employee
emp_1 INNER JOIN employee emp_2 ONemp_1.mngrno=emp_2.empno(TO DISPLAY DETAILS
OF THOSE EMPLOYEES WHICH HAVE AMANAGER OR NOT)

3. SELECT emp_1.empno,emp_1.name,emp_1.mngrno,emp_2.name managerFROM employee
emp_1 LEFT OUTER JOIN employee emp_2 ONemp_1.mngrno=emp_2.empno

VIEWS:-
Views are based on a table. They provide the user flexibility to have a limits access on

table. it can be usedto prevent users to access all columns of data. views canbe used to obtain
summary from various table by using clauses like union, group by etc. view can be created
onsingle table or multiple tables. Views itself have no data. They obtain data from tables at run
time on which theyare based. Views which can be used to modify the recordsof base table are
known as updateable views. Views which cannot be used to modify the records
ofbasetableareknownasreadonlyviews.

EXAMPLE(TO CREATE A VIEW BASED ON A SINGLE TABLE(INCLUDING PRIMARY KEY)):-
CREATE VIEW v1 AS SELECT empno,Ename ,sal FROM emp
In this case , all insert , update and delete operations canbe performed on emp table with the
help of view v1.

EXAMPLE(TO CREATE A VIEW BASED ON A SINGLE TABLE(EXCLUDING PRIMARY KEY)):-
CREATE VIEW v2 AS SELECT E name ,sal FROM empIN
This case, update and delete o
v1 but insert operation cannot
of table emp.

erations can beperformed on emp table with the help of view
e performed because view does notinclude primary key empno

Examples(to create a read only view based on a singletable using aggregate function or various
clauses likeunion, intersect etc.):-

1. CREATE VIEW v3 AS SELECT deptno,SUM(sal) SUM_SAL FROM EMPGROUP BY deptno

2. CREATE VIEW v4 AS SELECT SUM(sal) SUM_SAL, COUNT(sal)COUNT_SAL,AVG(sal) AVG_SAL,
MAX(sal) MAX_SAL,MIN(sal) MIN_SALFROM emp

3. CREATE VIEW v5 AS SELECT roll no FROM student6 UNION SELECTroll no FROM student7
In these cases in which aggregate functions or clauses like union, intersect , minus , group by ,
distinct are beingused. These types of views are read only. Wecan notperform insert , update or
delete operation on these views.

EXAMPLE(TO CREATE A VIEW BASED ON MULTIPLE TABLES ANDTHOSE TABLE DO NOT HAVE
PRIMARY KEY-FOREIGN KEYRELATIONSHIP):-

STUDY MATERIAL FOR BCA
RDBMS

SEMESTER - V, ACADEMIC YEAR 2020-2021

Page 28 of 67

L

CREATE VIEW v6 AS SELECT student.roll no "s_rollno",name, fees.rollno"f_rollno",fees FROM
student INNER JOIN fees ON student.roll no=fees.roll no

If a view is based on multiple tables and those tables donot have primary key-foreign key
relationship , then wecan not perform insert , update or delete operation oncreated view. If a
view is based on multiple tables and those tableshave primary key-foreign key relationship
then:-

1. Insert operation is not allowed on view.
2. Delete operation performed on view affect only childtable records
3.Update operation performed on view affect only childtable records.
If try to update columns of primary tablein update command, then oracle displays error
message\.

EXAMPLE(TO DELETE A VIEW):-
DROP VIEW v1;

INDEXES:-
An index is an ordered list of contents of a column orgroup of columns of a

table..indexing involves formation of an index table independent of the base table on which
index has been created. an index table has two columns:-

1. First column will hold stored data in sorted order ofthe column of base table on which
index is created.

2. Second column identifies the location of record in oracle database. This address field is
called rowid.indexing is an strategy to search and sort records in the table fastly. It is a
technique to improve the speed, without indexing, sequentotal search operation is
performed on table which degrades the performance ofsystem.

TOO MANY INDEXES ON A TAB E:-
Each time, a record isinserted in a table, oracle engine inserts a record both indata files

and index tables. In index table , records aremaintained in ascending order. if too many indexes
arecreated on a table , it will take longer to insert a recording a table. Although indexes
enhance the performance of select command, it degrades the performance of insertcommand.
so a proper balance between these two need tobe maintained.Categories of index based on
uniqueness of indexedcolumn:-

1. DUPLICATE INDEXES:- DUPLICATE INDEXES ALLOW DUPLICATEVALUES
COLUMN.

EXAMPLE:-CREATE INDEX idx_rn_fees ON fees(roll no);

FOR INDEXED

2. UNIQUE INDEXES:- UNIQUE INDEXES ALLOW ONLY UNIQUEVALUES FOR INDEXED COLUMN.

EXAMPLE:-CREATE UNIQUE INDEX idx_rn_fees ON fees(roll no);

STUDY MATERIAL FOR BCA
RDBMS

SEMESTER - V, ACADEMIC YEAR 2020-2021

Page 29 of 67

CATEGORIES OF INDEX BASED ON NO OF COLUMNS IN AN INDEX:-

1. SIMPLE INDEX:- AN INDEX CREATED ON SINGLE COLUMN IS SIMPLEINDEX.
EXAMPLE:-
CREATE INDEX idx_rn_fees ON fees(roll no);

2. COMPOSITE INDEX:- AN INDEX CREATED ON MULTIPLE COLUMNSIS COMPOSITE INDEX.
EXAMPLE:-
CREATE INDEX idx_rn_fees ON fees(class,roll no);

EXAMPLE(TO DELETE AN INDEX):-
DROP INDEX idx_rn_fees

SEQUENCES:-
Sequence is an object that can generate numeric values. Sequences

are used while

inserting data in a column oftable. it automatically increments a values in a column.it also
provides the option to insert only unique values.by using sequences , we can also mention
minimum valueand maximum value entered inside a column.

SYNTAX:-
CREATE SEQUENCE seq_name[INCREMENT BY valueSTART WITH valueMINVALUE value /
NOMINVALUEMAXVALUE value / NOMAXVALUECYCLE/NOCYCLECACHE value
/NOCACHE]DESCRIPTION:-

INCREMENT BY:-
It specifies the interval between two sequence numbers. Minvalue:-
It specifies minimum sequence number. if wedon’t want to specify any minimum value then
,nominvalue clause is used.

MAXVALUE:-
It specifies maximum sequence number. if wedon’t want to specify any maximum value then
,nomaxvalue clause is used.

CYCLE / NOCYCLE:-

IT SPECIFIES WHETHER SEQUENCE NUMBERSARE REPEATED AFTER MAXIMUM VALUE IS
ENTERED.

CACHE:-
It specifies how many sequence numbers are pre-allocated in memory for faster access.

it we do not wantto pre-allocate any sequence number , then no cache clause is used.

EXAMPLE(TO CREATE A SEQUENCE):-
CREATE SEQUENCE seq_rn INCREMENT BY 1 START WITH 8 MINVALUE1 MAXVALUE 10 CYCLE
CACHE 2

STUDY MATERIAL FOR BCA
RDBMS

SEMESTER - V, ACADEMIC YEAR 2020-2021

Page 30 of 67

a

g

w

EXAMPLE(TO INSERT A VALUE IN A TABLE USING SEQUENCE):-
INSERT INTO student VALUES(seq_rn.NEXTVAL , 'a')

EXAMPLE(TO ALTER A SEQUENCE):-
ALTER SEQUENCE seq_rn INCREMENT BY 2 MINVALUE 1 MAXVALUE20

EXAMPLE(TO DROP A SEQUENCE):-
DROP SEQUENCE seq_rn

Oracle Data Types

CHAR Data type
The CHAR datatype stores fixed-length character strings. When you create a table with a

CHAR column, you must specify a string length (in bytes or characters) bet een 1 and 2000
bytes for the CHAR column width. The default is 1 byte. Oracle then guarantees that:

When you insert or update a row in the table, the value for the CHAR column has the
fixed length. If you give a shorter value, then the value is blank-padded to the fixed length.If a
value is too large, Oracle Database returns an error.

VARCHAR2 and VARCHAR Datatypes
The VARCHAR2 datatype stores variable-length character strings. When you create a

table with a VARCHAR2 column, you specify a maximum string length (in bytes or characters)
between 1 and 4000 bytes for the VARCHAR2 column. For each row, Oracle Database stores
each value in the column as a variable-length field unless a value exceeds the column's
maximum length, in which case Oracle
Database returns an error. Usin VARCHAR2 and VARCHAR saves on space used by the table.

For example, assume you declare a column VARCHAR2 with a maximum size of 50
characters. In a single-byte ch racter set, if only 10 characters are given for the VARCHAR2
column value in a particular row, the column in the row's row piece stores only the 10
characters (10 bytes), not 50.

Overview of Numeric Datatypes
The numeric datatypes store positive and negative fixed and floating-point numbers,

zero, infinity, and values that
number" or NAN).

are the undefined result of an operation (that is, is "not a

NUMBER Data type
Floating-Point Numbers

The NUMBER data type stores fixed and floating-point numbers. Numbers of virtually
any magnitude can be stored and are guaranteed portable among different systems operating
Oracle Database, up to 38 digits of precision.
The following numbers can be stored in a NUMBER column:
Positive numbers in the range 1 x 10-130 to 9.99...9 x 10125 with up to 38 significant digits

STUDY MATERIAL FOR BCA
RDBMS

SEMESTER - V, ACADEMIC YEAR 2020-2021

Page 31 of 67

o

a
e

Negative numbers from -1 x 10-130 to 9.99...99 x 10125 with up to 38 significant digits

For numeric columns, you can specify the column as:
column_name NUMBER
Optionally, you can also specify a precision (total number of digits) and scale (number of digits
to the right of the decimal point):

column_name NUMBER (precision, scale)

If a precision is not specified, the column stores values as given. If no scale is specified, the scale
is zero.

Floating-Point Numbers

Oracle Database provides two numeric data types exclusively for floating-point
numbers: BINARY_FLOAT and BINARY_DOUBLE. They support all of the b sic functionality
provided by the NUMBER data type. However, while NUMBER uses d cimal precision,
BINARY_FLOAT and BINARY_DOUBLE use binary precision. This enables faster arithmetic
calculations and usually reduces storage requirements.

BINARY_FLOAT and BINARY_DOUBLE are approximate numeric data types. They store
approximate representations of decimal values, rather than exact representations. For
example, the value 0.1 cannot be exactly represented by either BINARY_DOUBLE or
BINARY_FLOAT. They are frequently used for scientific computations. Their behavior is similar
to the data types FLOAT and DOUBLE in Java and XMLSchema.

Overview of DATE Data type
The DATE data type stores point-in-time values (dates and times) in a table. The DATE

data type stores the year (including the century), the month, the day, the hours, the minutes,
and the seconds (after midnight).

Oracle Database can st re dates in the Julian era, ranging from January 1, 4712 BCE
through December 31, 9999 CE (Common Era, or 'AD'). Unless BCE ('BC' in the format mask) is
specifically used, CE date entries are the default.

Oracle Database uses its own internal format to store dates. Date data is stored in fixed-
length fields of seven bytes each, corresponding to century, year, month, day, hour, minute,
and second.

For input and output of dates, the standard Oracle date format is
follows:

DD-MON-YY, as

'13-NOV-92'
You can change this

default date format for an instance with

the parameter

NLS_DATE_FORMAT. You can also change it during a user session with the ALTER SESSION

STUDY MATERIAL FOR BCA
RDBMS

SEMESTER - V, ACADEMIC YEAR 2020-2021

Page 32 of 67

h

statement. To enter dates that are not in standard Oracle date format, use the TO_DATE
function with a format mask:

TO_DATE ('November 13, 1992', 'MONTH DD, YYYY')
Oracle Database stores time in 24-hour format—HH:MI:SS. By default, the time in a date

field is 00:00:00 A.M. (midnight) if no time portion is entered. In a time-only entry, the date
portion defaults to the first day of the current month. To enter the time portion of a date, use
the TO_DATE function with a format mask indicating the time portion, as in:

INSERT INTO birthdays (bname, bday) VALUES
('ANDY',TO_DATE('13-AUG-66 12:56 A.M.','DD-MON-YY HH:MI A.M.'));

A foreign key constraint (also called a referential integrity constraint) designates a
column as the foreign key and establishes a relationship between that foreign key and a
specified primary or unique key, called the referenced key. A composite foreign key designates
a combination of columns as the foreign key.

Database System Architectures
There are a number of database system architectures presently in use.

One must examine several criteria:
Where do the data and DBMS reside?
Where are the application program executed (e.g., which CPU)? This may include the user
interface.
Where are business rules (applications logic) enforced?

Traditional Mainframe Architecture
Database (or files) resides on a mainframe computer.
Applications are run on the same mainframe computer. e.g., COBOL programs or JCL scripts
that access the database.

Business rules are enforced in t e applications running on the mainframe.
Multiple users access the applications through simple terminals (e.g., IBM 3270 terminals or
VT220 terminals) that have no
screens.

processing power of their own. User interface is text-mode

Advantages:
Excellent security and control over applications
High reliability - years of proven MF technology
Relatively low incremental cost per user (just add a terminal)

Disadvantages:
Unable to effectively serve advanced user interfaces
Users unable to effectively manipulate data outside of standard applications
Personal Computer - Stand-Alone Database
Database(or files) reside on a PC - on the hard disk.

STUDY MATERIAL FOR BCA
RDBMS

SEMESTER - V, ACADEMIC YEAR 2020-2021

Page 33 of 67

y

e

Applications run on the same PC and directly access the database. In such cases, the application
is the DBMS.

Business rules are enforced in the applications running on the PC.
A single user accesses the applications.
File Sharing Architecture
PCs are connected to a local area network (LAN).
A single file server stores a single copy of the database files.
PCs on the LAN map a drive letter (or volume name) on the file server.
Applications run on each PC on the LAN and access the same set of files on the file server. The
application is also the DBMS.

Business rules are enforced in the applications - Also, the applications must handle concurrency
control. Possibly by file locking.

Each user runs a copy of the same application and accesses the same files.

Example: Sharing MS Access files on a file server.

Advantages:
(limited) Ability to share data among several users
Costs of storage spread out among users
Most components are now commodity items - prices falling

Disadvantages:
Limited data sharing ability - a f

w users at most

Classic Client/Server Architecture

Client machines:
Run own copy of an operating s

stem.

Run one or more applications using the client machine's CPU, memory.
Application communicates with DBMS server running on server machine through a Database
Driver
Database driver (middleware) makes a connection to the DBMS server over a network.

Examples of clients: PCs with MS Windows operating system. Forms and reports developed e.g.
Oracle Developer/2000, etc.

Server Machines:
Run own copy of an operating system.
Run a Database Management System that manages a database.

Provides a Listening daemon that accepts connections from client machines and submits
transactions to DBMS on behalf of the client machines.

STUDY MATERIAL FOR BCA
RDBMS

SEMESTER - V, ACADEMIC YEAR 2020-2021

Page 34 of 67

v

Examples: Sun Sparc server running UNIX operating system. RDBMS such as Oracle Server,
Sybase, Informix, DB2, etc.
PC with Windows NT operating system.
Middleware:
Small portion of software that sits between client and server.

Establishes a connection from
between them.

the client to the server and passes commands (e.g., SQL)

Examples:
For Oracle: SQL*Net (or Net8) running on both client and server.
For Sybase: Sybase Open Client and Open Server.
For IBM DB2: Client Application Enablers
Business rules may be enforced at:
The client application - so called "Fat Clients".
Entirely on the database server - so called "Thin Clients"
A Mix of both.

We can also call this a "Two Tier" or "Two Level" Client/Server Architecture

Advantages of client/server:
Processing of the entire Database System is spread out over clients and server.
DBMS can achieve high performance because it is dedicated to processing transactions (not
running applications).
Client Applications can take full advantage of advanced user interfaces such as Graphical User
Interfaces.

Disadvantages of client/server:
Implementation is more complex because one needs to deal with middleware and the network.
It is possible the network is not well suited for client/server communications and may become
saturated.
Additional burden on DBMS ser er to handle concurrency control, etc.

As more business rule logic is programmed into the client side applications, they can become
unwieldy. Stored procedures and triggers can help in this case.

Examples:
Oracle Server RDBMS running on a server.
Oracle Developer/2000 running on a client PC (connected with SQL*Net as the middleware).
Oracle Server RDBMS running on a server.
Sybase-PowerSoft PowerBuilder running on a client PC.
Oracle Server RDBMS running on a server.
MS Visual Basic application running on a client PC.
Sybase Adaptive Server RDBMS running on a server.

STUDY MATERIAL FOR BCA
RDBMS

SEMESTER - V, ACADEMIC YEAR 2020-2021

Page 35 of 67

C++ application running on a UNIX workstation.
Three-Tier Client Server
Same general situation as traditional client/server.
Difference is the enforcement of business rules (applications logic) is done in a "middle" layer.
Sometimes called "application logic" server.

Another option is to aggregate transactions from multiple users with a Transaction Monitor
Is "web friendly". The web browser becomes the user interface on the client.

Advantages:
Centralize applications logic (one place to make changes)
Relieves clients from having to load up on applications logic (the "fat client" approach).
Frees up DBMS server to efficiently process transactions

Disadvantages:
System complexity - extremely complex to program and debug
Security issues

Examples:
Oracle Web Applications Server running on the "Middle tier"
M Internet Explorer (web browser) running on a client PC.
Sybase Adaptive Server RDBMS running on a server.

STUDY MATERIAL FOR BCA
RDBMS

SEMESTER - V, ACADEMIC YEAR 2020-2021

Page 36 of 67

h

o

Fundamentals of PL/SQL

UNIT - IV
FUNDAMENTALS OF PL/SQL

Like other programming languages, PL/SQL has a character set, reserved words, punctuation,
data types, and fixed syntax rules.
Character Sets and Lexical Units
PL/SQL programs are written as lines of text using a specific set of characters:
■ Upper- and lower-case letters A .. Z and a ..z
■ Numerals 0 .. 9
■ Symbols () + – * / <>= ! ~ ^ ; : . ‘ @ % , ” # $ & _ | { } ? []
■ Tabs, spaces, and carriage returns
PL/SQL keywords are not case-sensitive, so lower-case letters are equivalent to corresponding

upper-case letters except within string and character literals.
■ Delimiters (simple and compound symbols) – A delimiter is a simple

or c
mpound symbol

that has a special meaning to PL/SQL. For example, you use delimiters to represent arithmetic
operations such as addition and subtraction.

■ Identifiers(which include reserved words) – We use identifiers to name PL/SQL program
items and units, which include constants, variables, exceptions, cursors, cursor variables,
subprograms, and packages.

■ Literals – A literal is an explicit numeric, character, string, or BOOLEAN value not
represented by an identifier.

■ Comments – The PL/SQL compiler ignores comments, but you should not. Adding
comments to your program promotes readability and aids understanding. Generally, you use
comments to describe the purpose and use of each code segment. PL/SQL supports two
comment styles: single-line and multi-line.
Oracle PL/SQL Data Types: Character, Number, Boolean, Date, LOB

What is PL/SQL Data types?
A data type is associated with t

e specific storage format and range constraints. In Oracle, each

value or constant is assigned with a data type.

Basically, it defines how the data is stored, handled and treated by Oracle during the data
storage and processing.
The main difference between PL/SQL and SQL data types is, SQL data type are limited to table
column while the PL/SQL data types are used in the PL/SQL blocksCHARACTER Data Type

 NUMBER Data Type
 BOOLEAN Data Type
 DATE Data Type
 LOB Data Type
 CHARACTER Data Type:

This data type basically stores alphanumeric characters in string format.
The literal values should always be enclosed in single quotes while assigning them to
CHARACTER data type.

STUDY MATERIAL FOR BCA
RDBMS

SEMESTER - V, ACADEMIC YEAR 2020-2021

Page 37 of 67

n

p

This character data type is further classified as follows:
 CHAR Data type (fixed string size)
 VARCHAR2 Data type (variable string size)
 VARCHAR Data type
 NCHAR (native fixed string size)
 NVARCHAR2 (native variable string size)
 LONG and LONG RAW

Data TypeDescriptionSyntax

CHAR This data type stores the string value, and the size of the stri
time of declaring the variable.

Oracle would be blank-padded the variable if the variable didn't occu

g is fixed at the

y the entire size

that has been declared for it, Hence Oracle will allocate the memory for declared size even if
the variable didn't occupy it fully.

The size restriction for this data type is 1-2000 bytes.
CHAR data type is more appropriate to use where ever fixed the size of data will be

handled.

grade CHAR;
manager CHAR (10):= 'guru99';

Syntax Explanation:
The first declaration statement declared the variable 'grade' of CHAR data type with the

maximum size of 1 byte (default value).

The second declaration statement declared the variable 'manager' of CHAR data type
with the maximum size of 10 and assigned the value 'guru99' which is of 6 bytes. Oracle will
allocate the memory of 10 bytes rather than 6 bytes in this case.

VARCHAR2
This data type stores the string, but the length of the string is not fixed. The size

restriction for this data type is 1-4000 bytes for table column size and 1-32767 bytes for
variables.

The size is defined for each variable at the time of variable declaration.But Oracle will
allocate memory only after the variable is defined, i.e., Oracle will consider only the actual
length of the string that is stored in a variable for memory allocation rather than the size that
has been given for a variable in the declaration part.

It is always good to use VARCHAR2 instead of CHAR data type to optimize the memory
usage.
manager VARCHAR2(10) := ‘guru99';

STUDY MATERIAL FOR BCA
RDBMS

SEMESTER - V, ACADEMIC YEAR 2020-2021

Page 38 of 67

b

Syntax Explanation:
The above declaration statement declared the variable 'manager' of VARCHAR2 data

type with the maximum size of 10 and assigned the value 'guru99' which is of 6 bytes. Oracle
will allocate memory of only 6 bytes in this case.

VARCHAR
This is synonymous with the VARCHAR2 data type.It is always a good practice to use

VARCHAR2 instead of VARCHAR to avoid behavioral changes.manager
‘guru99';

VARCHAR(10) :=

Syntax Explanation:
The above declaration statement declared the variable 'manager' of VARCHAR data type

with the maximum size of 10 and assigned the value 'guru99' which is of 6
allocate memory of only 6 bytes in this case. (Similar to VARCHAR2)

ytes. Oracle will

NCHARThis data type is same as CHAR data type, but the character set will of the national

Character set.
This character set can be defined for the session using NLS_PARAMETERS.
The character set can be either UTF16 or UTF8.
The size restriction is 1-2000 bytes.
native NCHAR(10);
Syntax Explanation:

The above declaration statement declares the variable 'native' of NCHAR data type with the
maximum size of 10.

The length of this variable depends upon the (number of lengths) per byte as defined in the
character set.

NVARCHAR2 This data type is same as VARCHAR2 data type, but the character set will be of
the national character set.

This character set can be defined for the session using NLS_PARAMETERS.
The size restriction is 1-4000 bytes.
Native varNVARCHAR2(10):='guru99';

Syntax Explanation:
The above declaration statement declares the variable 'Native_var' of NVARCHAR2 data

type with the maximum size of 10.

LONG and LONGRAW
This data type is used

to store large text or raw data up to the maximum size of

2GB.These are mainly used in the data dictionary.LONG data type is used to store character set

STUDY MATERIAL FOR BCA
RDBMS

SEMESTER - V, ACADEMIC YEAR 2020-2021

Page 39 of 67

data, while LONG RAW is used to store data in binary format.LONG RAW data type accepts
media objects, images, etc. whereas LONG works only on data that can
character set.

Large_text LONG;
Large_raw LONG RAW;
Syntax Explanation:

be stored using

The above declaration statement declares the variable 'Large_text' of LONG data type
and 'Large_raw' of LONG RAW data type.

Note: Using LONG data type is not recommended by Oracle. Instead, LOB data type should be
preferred.

NUMBER Data Type:
This data type stores fixed or floating point numbers up to 38 digits of precision. This

data type is used to work with fields which will contain only number data. The variable can be
declared either with precision and decimal digit details or without this information. Values need
not enclose within quotes while assigning for this data type.
A NUMBER(8,2);
B NUMBER(8);
C NUMBER;

Syntax Explanation:

In the above, the first declaration declares the variable 'A' is of number data type with
total precision 8 and decimal digits 2.

The second declaration declares the variable 'B' is of number data type with total
precision 8 and no decimal digits.

The third declaration is the most generic, declares variable 'C' is of number data type
with no restriction in precision or decimal places. It can take up to a maximum of 38 digits.

BOOLEAN Data Type:
This data type stores the logical values. It represents either TRUE or FALSE and mainly

used in conditional statements. Values need not enclose within quotes while assigning for this
data type.

Var1 BOOLEAN;
Syntax Explanation:

In the above, variable 'Var1' is declared as BOOLEAN data type. The output of the code
will be either true or false based on the condition set.

DATE Data Type:
This data type stores the values in date format, as date, month, and year. Whenever a

variable is defined with DATE data type along with the date it can hold time information and by

STUDY MATERIAL FOR BCA
RDBMS

SEMESTER - V, ACADEMIC YEAR 2020-2021

Page 40 of 67

g

E

g

default time information is set to 12:00:00 if not specified. Values need to enclose within
quotes while assigning for this data type.

The standard Oracle time format for input and output is 'DD-MON-YY' and it is again set at
NLS_PARAMETERS (NLS_DATE_FORMAT) at the session level.
newyear DATE:='01-JAN-2015';
current_date DATE:=SYSDATE;

Syntax Explanation:
In the above, variable 'newyear' is declared as DATE data type and assi

Jan 1st, 2015 date.

ned the value of

The second declaration declares the variable current_date as DAT data type and
assigned the value with current system date.
Both these variable holds the time information.

LOB Data Type:
This data type is mainly used to store and manipulate large blocks of unstructured data's

like images, multimedia files, etc. Oracle prefers LOB instead of the a LONG data type as it is
more flexible than the LONG data type. The below are the few main advantage of LOB over
LONG data type.
The number of column in a table with LONG data type is limited to 1, whereas a table has no
restriction on a number of columns with LOB data type.
The data interface tool accepts LOB data type of the table during data replication, but it omits
LONG column of the table. These LONG columns need to be replicated manually.

The size of the LONG column is 2GB, whereas LOB can store up to 128 TB.
Oracle is constantly improvisin the LOB data type in each of their releases according to the
modern requirement, whereas LONG data type is constant and not getting many updates.
So, it is always good to use LOB data type instead of the LONG data type. Following are the
different LOB data types. They can store up to the size of 128 terabytes.

Declarations
You can declare variables and constants in the declarative part of any PL/SQL block,

subprogram, or package. Declarations allocate storage space for a value, specify its data type,
and name the storage location so that you can reference it.

Some examples follow:
DECLARE
birthday DATE;
emp_count SMALLINT := 0;
Constants – To declare a constant, put the keyword CONSTANT before the type specifier.

Example –
DECLARE
credit_limit CONSTANT REAL := 5000.00;

STUDY MATERIAL FOR BCA
RDBMS

SEMESTER - V, ACADEMIC YEAR 2020-2021

Page 41 of 67

d

P

Using DEFAULT
You can use the keyword DEFAULT instead of the assignment operator to initialize variables. For
example, the declaration
blood_type CHAR := 'O';
can be rewritten as follows:
blood_type CHAR DEFAULT 'O';
Using NOT NULL –
Besides assigning an initial value, declarations can impose the NOT NULL constraint:

DECLARE
acct_id INTEGER(4) NOT NULL := 9999;
Using the %TYPE Attribute

The %TYPE attribute provides the data type of a variable or database column. This is particularly
useful when declaring variables that will hold database values. For example, assume there is a
column named last_name in a table named employees.
To declare a variable named v_last_name that has the same data type as column title, use dot
notation and the %TYPE attribute, as follows:
v_last_nameemployees.last_name%TYPE;
Using the %ROWTYPE Attribute

The %ROWTYPE attribute provides a record type that represents a row in a table or view.
Columns in a row and corresponding fields in a record have the same names and data types.
However, fields in a %ROWTYPE record do not inherit constraints, such as the NOT NULL or
check constraint, or default values.

DECLARE
dept_recdepartments%ROWTY
Restrictions on Declarations

PL/SQL does not allow forwar

E; -- declare record variable

references. You must declare a variable or constant before
referencing it in other statements, including other declarative statements.

DECLARE
-- Multiple declarations not allowed.
-- i, j, k, l SMALLINT;
-- Instead, declare each separately.
i SMALLINT;
j SMALLINT;
-- To save space, you can declare more than one on a line.
k SMALLINT; l SMALLINT;
RAW,NCHAR,NVARCHAR2,RAW,ROWID,STRING,VARCHAR,VARCHAR2, Composite TypesTABLE,
VARRAY, RECORDLOB TypesBFILE, BLOB, CLOB, NCLOBReferenceTypesREF CURSORBOOLEAN,
DATEDBMS_OUTPUT.PUT_LINE:It is a pre-defined package that prints the message inside the
parenthesis

STUDY MATERIAL FOR BCA
RDBMS

SEMESTER - V, ACADEMIC YEAR 2020-2021

Page 42 of 67

u
e
u

s

y

ANONYMOUS PL/SQL BLOCK.

The text of an Oracle Forms trigger is an anonymous PL/SQL block. It consists of three sections:
 A declaration of variables, constants, cursors and exceptions which is optional.
 A section of executable statements.
 A section of exception handlers, which is optional.

ATTRIBUTES
Allow us to refer to data types and objects from the database.PL/SQL variables and

Constants can haveattributes. The main advantage of using Attributes is even if you Change the
data definition, you don’tneed to change in the application.

%TYPE
It is used when declaring variables that refer to the database column .Using %TYPE to

declare variable has two advantages. First, you need not know the exact data type of variable.
Second, if the database definition of variable changes, the data t
changesaccordingly at run time.

pe of variable

%ROWTYPE
The %ROWTYPE attribute provides a record type that represents a row in a table (or

view). The recordcan store an entire row of data selected from the table or fetched from a
cursor or strongly typedcursor variable.

Control Structures in PL/SQL
Procedural computer programs use the basic control structures.

Control structures
The selection structure tests a condition, then executes one sequence of statements

instead of another, depending on whether the condition is true or false. A condition is any
variable or expression that ret
executes a sequence of statem
structure simply executes a seq

rns a BOOLEAN value (TRUE or FALSE).The iteration structure
nts repeatedly as long as a condition holds true.The sequence
ence of statements in the order in which they occur.

Testing Conditions: IF and CASE Statements
The IF statement executes a sequence of statements depending on

the value of a

condition. There are three forms of IF statements: IF-THEN, IF-THEN-ELSE, and IF-THEN-ELSIF.
The CASE statement is a compact way to evaluate a single condition and choose

between many alternative actions. It makes sense to use CASE when there are three or more
alternatives to choose from.

Using the IF-THEN Statement
The simplest form of IF statement associates a condition with a sequence ofstatements

enclosed by the keywords THEN and END IF (not ENDIF)

STUDY MATERIAL FOR BCA
RDBMS

SEMESTER - V, ACADEMIC YEAR 2020-2021

Page 43 of 67

The sequence of statements is executed only if the condition is TRUE. If the condition is
FALSE or NULL, the IF statement does nothing. In either case, control passes to the next
statement.

Example: Using a Simple IF-THEN Statement
DECLARE
sales NUMBER(8,2) := 10100;
quota NUMBER(8,2) := 10000;
bonus NUMBER(6,2);
emp_id NUMBER(6) := 120;

BEGIN
IF sales > (quota + 200) THEN
bonus := (sales - quota)/4;
UPDATE employees SET salary = salary + bonus WHERE employee_id = emp_id;
END IF;
END;
35
/
Using CASE Statements
Like the IF statement, the CASE statement selects one sequence of statements to execute.
However, to select the sequence, the CASE statement uses a selector rather than multiple
Boolean expressions. A selector is an expression whose value is used to select one of several
alternatives.
Example: Using the CASE-WHEN Statement

DECLARE
grade CHAR(1);
BEGIN
grade := 'B';
CASE grade
WHEN 'A' THEN DBMS_OUTPUT.PUT_LINE('Excellent');
WHEN 'B' THEN DBMS_OUTPUT.PUT_LINE('Very Good');
WHEN 'C' THEN DBMS_OUTPUT.PUT_LINE('Good');
WHEN 'D' THEN DBMS_OUTPUT.PUT_LINE('Fair');
WHEN 'F' THEN DBMS_OUTPUT.PUT_LINE('Poor');
ELSE DBMS_OUTPUT.PUT_LINE('No such grade');
END CASE;
END;
/
Controlling Loop Iterations: LOOP and EXIT Statements
LOOP statements execute a sequence of statements multiple times. There are three forms of
LOOP statements: LOOP, WHILE-LOOP, and FOR-LOOP.
36
Using the LOOP Statement

STUDY MATERIAL FOR BCA
RDBMS

SEMESTER - V, ACADEMIC YEAR 2020-2021

Page 44 of 67

t

The simplest form of LOOP statement is the basic loop, which encloses
statements between the keywords LOOP and END LOOP, as follows:
LOOP
sequence_of_statements
END LOOP;

a sequence of

With each iteration of the loop, the sequence of statements is executed, then control resumes
at the top of the loop. You use an EXIT statement to stop looping and prevent an infinite loop.
You can place one or more EXIT statements anywhere inside a loop, but not outside a loop.
There are two forms of EXIT statements: EXIT and
EXIT-WHEN.
Using the EXIT Statement
The EXIT statement forces a loop to complete unconditionally. When an EXIT statement is
encountered, the loop completes immediately and control passes to the next s atement.
Using the EXIT-WHEN Statement
The EXIT-WHEN statement lets a loop complete conditionally. When the EXIT statement is
encountered, the condition in the WHEN clause is evaluated. If the condition is true, the loop
completes and control passes to the next statement after the loop.
Labeling a PL/SQL Loop
Like PL/SQL blocks, loops can be labeled. The optional label, an undeclared identifier enclosed
by double angle brackets, must appear at the beginning of the LOOP statement. The label name
can also appear at the end of the LOOP statement. When you nest labeled loops, use ending
label names to improve readability.

Using the WHILE-LOOP Statement
The WHILE-LOOP statement executes the statements in the loop body as long as a condition is
true:
WHILE condition LOOP
sequence_of_statements

END LOOP;
Using the FOR-LOOP Statement
Simple FOR loops iterate over a specified range of integers. The number of iterations is known
before the loop is entered. A double dot (..) serves as the range operator. The range is
evaluated when the FOR loop is first entered and is never re-evaluated. If the lower bound
equals the higher bound, the loop body is executed once.
Example: Using a Simple FOR..LOOP Statement

DECLARE
p NUMBER := 0;
BEGIN
FOR k IN 1..500 LOOP -- calculate pi with 500 terms
p := p + (((-1) ** (k + 1)) / ((2 * k) - 1));
END LOOP;
p := 4 * p;
DBMS_OUTPUT.PUT_LINE('pi is approximately : ' || p); -- print result

STUDY MATERIAL FOR BCA
RDBMS

SEMESTER - V, ACADEMIC YEAR 2020-2021

Page 45 of 67

a

END;
/
Sequential Control: GOTO and NULL Statements

The GOTO statement is seldom needed. Occasionally, it can simplify logic enough to
warrant its use. The NULL statement can improve readability by making the meaning and action
of conditional statements clear.

Overuse of GOTO statements can result in code that is hard to understand and maintain.
Use GOTO statements sparingly. For example, to branch from a deeply nested structure to an
error-handling routine, raise an exception rather than use a GOTO statement.
Using the GOTO Statement

The GOTO statement branches to a label unconditionally. The label must be unique

within its scope and must precede an executable statement or a PL/SQL block. When executed,
the GOTO statement transfers control to the labeled statement or block. The l
or block can be down or up in the sequence of statements.

beled statement

Example : Using a Simple GOTO Statement
DECLARE
p VARCHAR2(30);
n PLS_INTEGER := 37; -- test any integer > 2 for prime
BEGIN
FOR j in 2..ROUND(SQRT(n)) LOOP
IF n MOD j = 0 THEN -- test for prime
p := ' is not a prime number'; -- not a prime number
GOTO print_now;
END IF;
END LOOP;
p := ' is a prime number';
<<print_now>>
DBMS_OUTPUT.PUT_LINE(TO_CHAR(n) || p);
END;
/
Using the NULL Statement
The NULL statement does nothing, and passes control to the next statement. Some languages
refer to such an instruction as a no-op (no operation).

Example: Using the NULL Statement to Show No Action
DECLARE
v_job_idVARCHAR2(10);
v_emp_id NUMBER(6) := 110;
BEGIN
SELECT job_id INTO v_job_id FROM employees WHERE employee_id = v_emp_id;
IF v_job_id = 'SA_REP' THEN
UPDATE employees SET commission_pct = commission_pct * 1.2;

STUDY MATERIAL FOR BCA
RDBMS

SEMESTER - V, ACADEMIC YEAR 2020-2021

Page 46 of 67

n

ELSE
NULL; -- do nothing if not a sales representative
END IF;
END;
/

Oracle PL/SQL Insert, Update, Delete & Select Into [Example]
we are going to learn how to use SQL in PL/SQL. SQL is the actual component that takes

care of fetching and updating of data in the database whereas PL/SQL is the component that
processes these data. Further, in this article, we will also discuss how to combi
the PL/SQL block.

 Data Insertion
 Data Update
 Data Deletion
 Data Selection
 DML Transactions in PL/SQL

e the SQL within

DML stands for Data Manipulation Language. These statements are mainly used to perform the
manipulation activity. It deals with the below operations.

 Data Insertion
 Data Update
 Data Deletion
 Data Selection

In PL/SQL, we can do the data manipulation only by using the SQL commands.

Data Insertion
In PL/SQL, we can insert the data into any table using the SQL command INSERT INTO.

This command will take the table name, table column and column values as the input and insert
the value in the base table.

The INSERT command can also take the values directly from another table using 'SELECT'
statement rather than giving the values for each column. Through 'SELECT' statement, we can
insert as many rows as the base table contains.

Syntax:
BEGIN
INSERT INTO <table_name>(<column1 >,<column2>,...<column_n>)
VALUES(<valuel><value2>,...:<value_n>);
END;

The above syntax shows the INSERT INTO command. The table name and values are a
mandatory fields, whereas column names are not mandatory if the insert
values for all the column of the table.

statements have

The keyword 'VALUES' is mandatory if the values are given separately as shown above.
Syntax:

STUDY MATERIAL FOR BCA
RDBMS

SEMESTER - V, ACADEMIC YEAR 2020-2021

Page 47 of 67

o

BEGIN
INSERT INTO <table_name>(<columnl>,<column2>,...,<column_n>)
SELECT <columnl>,<column2>,.. <column_n> FROM <table_name2>;
END;

The above syntax shows the INSERT INTO command that takes the values directly from the
<table_name2> using the SELECT command.
The keyword 'VALUES' should not be present in this case as the values are not given separately.

Data Update
Data update simply means an update of the value of any column in the table. This can be done
using 'UPDATE' statement. This statement takes the table name, column name and value as the
input and updates the data.
Syntax:
BEGIN
UPDATE <table_name>
SET <columnl>=<VALUE1>,<column2>=<Yalue2>,<column_n>=<value_n>
WHERE <condition that uniquely identifies the record that needs to be update>;
END;

The above syntax shows the UPDATE. The keyword 'SET' instruct that PL/SQL engine to update
the value of the column with the value given.

'WHERE' clause is optional. If this clause is not given, then the value of the mentioned column in
the entire table will be updated.

Data Deletion
Data deletion means to delete
is used for this purpose.

ne full record from the database table. The 'DELETE' command

Syntax:
BEGIN
DELETE
FROM
<table_name>
WHERE <condition that uniquely identifies the record that needs to be update>;
END;

The above syntax shows the DELETE command. The keyword 'FROM' is optional and
with or without 'FROM' clause the command behaves in the same way.'WHERE' clause is
optional. If this clause is not given, then the entire table will be deleted.

Data Selection
Data projection/fetching means to retrieve the required data from the database table.

This can be achieved by using the command 'SELECT' with 'INTO' clause. The 'SELECT' command

STUDY MATERIAL FOR BCA
RDBMS

SEMESTER - V, ACADEMIC YEAR 2020-2021

Page 48 of 67

E

will fetch the values from the database, and 'INTO' clause will assign these values to the local
variable of the PL/SQL block.

Below are the points that need to be considered in 'SELECT' statement.

'SELECT' statement should return only one record while using 'INTO' clause as one
variable can hold only one value. If the 'SELECT' statement returns more than one value than
'TOO_MANY_ROWS' exception will be raised.

'SELECT' statement will assign the value to the variable in the 'INTO' clause, so it needs
to get at least one record from the table to populate the value. If it didn't get any record, then
the exception 'NO_DATA_FOUND' is raised.

The number of columns and their data type in 'SELECT' clause should match with the
number of variables and their data types in the 'INTO' clause.
The values are fetched and populated in the same order as mentioned in the statement.
'WHERE' clause is optional that allows to having more restriction on the records that are going
to be fetched.

'SELECT' statement can be used in the 'WHERE' condition of other DML statements to
define the values of the conditions.

The 'SELECT' statement when using 'INSERT', 'UPDATE', 'DELETE' statements should not
have 'INTO' clause as it will not populate any variable in these cases.

Syntax:
BEGIN
SELECT <columnl>,..<column_n> INTO <vanable 1 >,..<variable_n>
FROM <table_name>
WHERE <condition to fetch the required records>;
END;

The above syntax shows the S LECT-INTO command. The keyword 'FROM' is mandatory that
identifies the table name from which the data needs to be fetched.

'WHERE' clause is optional. If this clause is not given, then the data from the entire table will be
fetched.
Example 1: In this example, we are going to see how to perform DML operations in PL/SQL. We
are going to insert the below four records into emp table.

EMP_NAME EMP_NO SALARY MANAGER

BBB 1000 25000 AAA
XXX 1001 10000 BBB
YYY 1002 10000 BBB
ZZZ 1003 7500 BBB

STUDY MATERIAL FOR BCA
RDBMS

SEMESTER - V, ACADEMIC YEAR 2020-2021

Page 49 of 67

Autonomous Transaction in Oracle PL/SQL: Commit, Rollback

What are TCL Statements in PL/SQL?
TCL stands for Transaction Control Statements. It will either save the pending

transactions or roll back the pending transaction. These statements play the vital role because
unless the transaction is saved the changes through DML statements will not be saved in the
database. Below are the different TCL statements.

COMMIT Saves all the pending transaction
ROLLBACK Discard all the pending transaction
SAVEPOINT Creates a point in the transaction till which rollback can be done later
ROLLBACK TO Discard all the pending transaction till the specified <save point>

The transaction will be complete under the following scenarios.
 When any of the above statements is issued (except SAVEPOINT)
 When DDL statements are issued. (DDL are auto-commit statements)
 WHEN DCL statements are issued. (DCL are auto-commit statements)
 What is Autonomous Transaction

In PL/SQL, all the modifications done on data will be termed as a transaction. A
transaction is considered as complete when the save/discard is applied to it. If no save/discard
is given, then the transaction will not be considered as complete and the modifications done on
the data will not be made permanent on the server.

Irrespective of some modifications done during a session, PL/SQL will treat the whole
modification as a single transaction and saving/discard this transaction affects to the entire
pending changes in that session. Autonomous Transaction provides functionality to the
developer in which it allows to do changes in a separate transaction and to save/discard that
particular transaction without affecting the main session transaction.

This autonomous transaction can be specified at subprogram level.To make any
subprogram to work in a different transaction, the keyword 'PRAGMA
AUTONOMOUS_TRANSATION' should be given in the declarative section of that block.

It will instruct that compiler to treat this as the separate transaction and
saving/discarding inside this block will not reflect in the main transaction.

Issuing COMMIT or ROLLBACK is mandatory before going out of this autonomous
transaction to the main transaction because at any time only one transaction can be active.

So once we made an autonomous transaction we need to save it and complete the
transaction then only we can move back to the main transaction.

Syntax:

STUDY MATERIAL FOR BCA
RDBMS

SEMESTER - V, ACADEMIC YEAR 2020-2021

Page 50 of 67

DECLARE
PRAGMA AUTONOMOUS_TRANSACTION;
BEGIN
<executin_part>
[COMMIT|ROLLBACK]
END;
/

In the above syntax, the block has been made as an autonomous transaction.
Example 1: In this example, we are going to understand how the autonomous transaction is
working.
SQL in PL/SQL

DECLARE
L_salary NUMBER;

IS
PRAGMA AUTONOMOUS_TRANSACTION;
BEGIN
UPDATE emp
SET salary=salary+15000
WHERE emp_no=1002;
COMMIT;
E ND;

BEGIN
SELECT salary INTO l_salary FROM emp WHERE emp_no=1001;
Dbms_output.put_line(‘Before: Salary of 1001 is‘||l_salary);
SELECT salary INTO l_salary FROM emp WHERE emp_no=1002;
Dbmsoutput.put_line(‘Before: Salary of 1002 is‘||1_salary):
UPDATE emp
SET salary=salary+5000
WHERE emp_no=1001;
Nested_block;
ROLLBACK;
SELECT salary INTO l_salary FROM emp WHERE emp_no=1001;
Dbms_output.put_line(‘After: Salary of 1001 is‘||l_salary);
SELECT salary INTO l_salary FROM emp WHERE emp_no=1002;
Dbms_output.put_line(‘After: Salary of 1002 is‘||l_salary);
END:
/

Output
Before:Salary of 1001 is 15000
Before:Salary of 1002 is 10000
After:Salary of 1001 is 15000

STUDY MATERIAL FOR BCA
RDBMS

SEMESTER - V, ACADEMIC YEAR 2020-2021

Page 51 of 67

e

After:Salary of 1002 is 25000

Code Explanation:
Code line 2: Declaring l_salary as NUMBER.
Code line 3: Declaring nested_block procedure
Code line 4: Making nested_block procedure as 'AUTONOMOUS_TRANSACTION'.
Code line 7-9: Increasing the salary for employee number 1002 by 15000.
Code line 10: Committing the transaction.
Code line 13-16: Printing the salary details of employee 1001 and 1002 before changes.
Code line 17-19: Increasing the salary for employee number 1001 by 5000.
Code line 20: Calling the nested_block procedure;
Code line 21: Discarding the main transaction.
Code line 22-25: Printing the salary details of employee 1001 and 1002 after changes.

The salary increase for employee number 1001 is not reflected b cause the main
transaction has been discarded. The salary increase for employee number 1002 is reflected
because that block has been made as a separate transaction and saved at the end.

So irrespective of the save/discard at main transaction the changes
transaction has been saved without affecting the main transaction changes.

at autonomous

STUDY MATERIAL FOR BCA
RDBMS

SEMESTER - V, ACADEMIC YEAR 2020-2021

Page 52 of 67

t

What is Exception Handling in PL/SQL?

UNIT – V
EXCEPTION

An exception occurs when the PL/SQL engine encounters an instruction which it cannot
execute due to an error that occurs at run-time. These errors will not be captured at the time of
compilation and hence these needed to handle only at the run-time.

For example, if PL/SQL engine receives an instruction to divide any number by '0', then the
PL/SQL engine will throw it as an exception. The exception is only raised at the run-time by the
PL/SQL engine.
Exceptions will stop the program from executing further, so to avoid such condition, they need
to be captured and handled separately. This process is called as Exception-Handling, in which
the programmer handles the exception that can occur at the run time.

you will learn the following topics-
Exception-Handling Syntax
Types of Exception
Predefined Exceptions
User-defined Exception
PL/SQL Raise Exception
Important points to note in Exception

Exception-Handling Syntax
Exceptions are handled at the block, level, i.e., once if any exception occurs in any block

then the control will come out of execution part of that block. The exception will then be
handled at the exception handling part of that block. After handling the exception, it is not
possible to resend control back o the execution section of that block.

The below syntax explains how to catch and handle the exception.
Exception Handling in PL/SQL
BEGIN
<execution block>
.
.
EXCEPTION
WHEN <exceptionl_name>
THEN
<Exception handling code for the “exception 1 _name’' >
WHEN OTHERS
THEN
<Default exception handling code for all exceptions >
END;

Syntax Explanation:

STUDY MATERIAL FOR BCA
RDBMS

SEMESTER - V, ACADEMIC YEAR 2020-2021

Page 53 of 67

m

In the above syntax, the exception-handling block contains series of WHEN condition to handle
the exception.

Each WHEN condition is followed by the exception name which is expected to be raised
at the run time.When any exception is raised at runtime, then the PL/SQL engine will look in the
exception handling part for that particular exception. It will start from the first 'WHEN' clause
and, sequentially it will search.

If it found the exception handling for the exception which has been raised, then it will
execute that particular handling code part.

If none of the 'WHEN' clause is present for the exception which has been raised, then
PL/SQL engine will execute the 'WHEN OTHERS' part (if present). This is common for all the
exception.

After executing the exception, part control will go out of the current block.

Only one exception part can be executed for a block at run-time. After executing it, the
controller will skip the remaining exception handling part and will go out of the current block.

Note: WHEN OTHERS should always be at the last position of the sequence. The exception
handling part present after WHEN OTHERS will never get executed as the control will exit from
the block after executing the WHEN OTHERS.

Types of Exception
There are two types of Exceptions in Pl/SQL.

 Predefined Exceptions
 User-defined Exception

Predefined Exceptions
Oracle has predefined

some common exception. These exceptions

have a unique

exception name and error number. These exceptions are already defined in the 'STANDARD'
package in Oracle. In code, we can directly use these predefined exception name to handle
them.

Below are the few predefined exceptions
Exception Error Code Exception Reason
ACCESS_INTO_NULL ORA-06530 Assign a value to the attributes of uninitialized objects
CASE_NOT_FOUND ORA-06592 None of the 'WHEN' clause in CASE statement satisfied and
no 'ELSE' clause is specified
COLLECTION_IS_NULLORA-06531 Using collection methods (except EXISTS) or accessing
collection attributes on a uninitialized collections
CURSOR_ALREADY_OPEN ORA-06511 Trying to open a cursor which is already opened
DUP_VAL_ON_INDEX ORA-00001 Storing a duplicate value in a database column that is a
constrained by unique index
INVALID_CURSOR ORA-01001 Illegal cursor operations like closing an unopened cursor

STUDY MATERIAL FOR BCA
RDBMS

SEMESTER - V, ACADEMIC YEAR 2020-2021

Page 54 of 67

e

INVALID_NUMBER
number character

ORA-01722 Conversion of character to a number failed due to invalid

NO_DATA_FOUND ORA-01403 When 'SELECT' statement that contains INTO clause
fetches no rows.

ROW_MISMATCH ORA-06504 When cursor variable data type is incompatible with the

actual cursor return type
SUBSCRIPT_BEYOND_COUNT ORA-06533 Referring collection by an index
larger than the collection size
SUBSCRIPT_OUTSIDE_LIMIT ORA-06532 Referring collection by an index
outside the legal range (eg: -1)

number that is

number that is

TOO_MANY_ROWS ORA-01422 When a 'SELECT' statement with INTO clause returns more
than one row
VALUE_ERRORORA-06502 Arithmetic or size constraint error (eg: assigning a value to a
variable that is larger than the variable size)
ZERO_DIVIDE ORA-01476 Dividing a number by '0'

User-defined Exception
In Oracle, other than the above-predefined exceptions, the programmer can create their

own exception and handle them. They can be created at a subprogram level in the declaration
part. These exceptions are visible only inthat subprogram. The exception that is defined in the
package specification is public exception, and it is visible wherever the package is accessible. <

Syntax: At subprogram level
DECLARE
<exception_name> EXCEPTION;
BEGIN
<Execution block>
EXCEPTION
WHEN <exception_name> THEN
<Handler>
END;

In the above syntax, the variabl 'exception_name' is defined as 'EXCEPTION' type.
This can be used as in a similar way as a predefined exception.
Syntax:At Package Specification level

CREATE PACKAGE <package_name>
IS

<exception_name> EXCEPTION;
.
.
END <package_name>;
In the above syntax, the variable 'exception_name' is defined as 'EXCEPTION' type in the
package specification of <package_name>.
This can be used in the database wherever package 'package_name' can be called.

STUDY MATERIAL FOR BCA
RDBMS

SEMESTER - V, ACADEMIC YEAR 2020-2021

Page 55 of 67

t

AS
BEGIN
<Execution block>
EXCEPTION
WHEN <exception_name> THEN
<Handler>
RAISE;
END;

Syntax Explanation:
In the above syntax, the keyword RAISE is used in the exception handling block.

Whenever program encounters exception "exception_name", the exception is handled and will
be completed normally

But the keyword 'RAISE' in the exception handling part will propaga e this particular
exception to the parent program.

Note: While raising the exception to the parent block the exception that is getting raised should
also be visible at parent block, else oracle will throw an error.

We can use keyword 'RAISE' followed by the exception name to raise that particular
user-defined/predefined exception. This can be used in both execution part and in exception
handling part to raise the exception.

Exception Handling in PL/SQL
CREATE [PROCEDURE | FUNCTION]
AS
BEGIN
<Execution block>
RAISE <exception_name>
EXCEPTION
WHEN <exception_name> THEN
<Handler>
END;

Syntax Explanation:
In the above syntax, the keyword RAISE is used in the execution part followed by exception
"exception_name".
This will raise this particular exception at the time of execution, and this needs to be handled or
raised further.

Example 1: In this example, we are going to see
How to declare the exception
How to raise the declared exception and
How to propagate it to the main block

STUDY MATERIAL FOR BCA
RDBMS

SEMESTER - V, ACADEMIC YEAR 2020-2021

Page 56 of 67

e

Exception Handling in PL/SQL
Exception Handling in PL/SQL

DECLARE
Sample_exception EXCEPTION;
PROCEDURE nested_block
IS
BEGIN
Dbms_output.put_line(‘Inside nested block’);
Dbms_output.put_line(‘Raising sample_exception from nested block’);
RAISE sample_exception;
EXCEPTION
WHEN sample_exception THEN
Dbms_output.put_line (‘Exception captured in nested block. Raising to main block’);
RAISE,
END;

BEGIN
Dbms_output.put_line(‘Inside main block’);
Dbms_output.put_line(‘Calling nested block’);
Nested_block;
EXCEPTION
WHEN sample_exception THEN
Dbms_output.put_line (‘Exception captured in main block');
END:
/

Code Explanation:
Code line 2: Declaring the variable 'sample_exception' as EXCEPTION type.
Code line 3: Declaring procedur nested_block.
Code line 6: Printing the statement "Inside nested block".
Code line 7: Printing the statement "Raising sample_exception from nested block."
Code line 8: Raising the exception using 'RAISE sample_exception'.
Code line 10: Exception handler for exception sample_exception in the nested block.
Code line 11: Printing the statement 'Exception captured in nested block. Raising to main block'.
Code line 12: Raising the exception to main block (propagating to the main block).
Code line 15: Printing the statement "Inside the main block".
Code line 16: Printing the statement "Calling nested block".
Code line 17: Calling nested_block procedure.
Code line 19: Exception handler for sample_exception in the main block.
Code line 20: Printing the statement "Exception captured in the main block."

Important points to note in Exception
In function, an exception should always either return value or raise the exception

further. else Oracle will throw 'Function returned without a value' error at run-time.

STUDY MATERIAL FOR BCA
RDBMS

SEMESTER - V, ACADEMIC YEAR 2020-2021

Page 57 of 67

c

m

n

Transaction control statements can be given at exception handling block.SQLERRM and
SQLCODE are the in-built functions that will give the exception message and code.
If an exception is not handled then by default all the active transaction in that session will be
rolled back.RAISE_APPLICATION_ERROR (-<error_code>, <error_message>) can be used instead
of RAISE to raise the error with user code and message. Error code should be greater than
20000 and prefixed with '-'.

EXCEPTION
An Exception is raised when an error occurs. In case of an error then

ormal execution

stops and thecontrol is immediately transferred to the exception handling part of the PL/SQL
Block.Exceptions are designed for runtime handling, rather than compile time handling.
Exceptions improve readability by letting you isolate error-handling routines.When an error
occurs, an exception is raised. That is, normal execution stops and control transfers tothe
exception-handling part of your PL/SQL block or subprogram. Exception Types

Predefined Exceptions
An internal exception is raised implicitly whenever your PL/SQL program violates an Oracle rule
orexceeds a system-dependent limit. Every Oracle error has a number, but exceptions must be
handledby name. So, PL/SQL predefines some common Oracle errors as exceptions. For
example, PL/SQLraises the predefined exception NO_DATA_FOUND if a SELECT INTO statement
returns no rows.

User – Defined exceptions
User – defined exception must be defined and explicitly raised by the user

EXCEPTION_INIT
A named exception can be asso
errorspecifically.

iated with a particular oracle error. This can be used to trap the

PRAGMA EXCEPTION_INIT
(exception name, Oracle_error_number);The pragma EXCEPTION_INIT associates an exception
name with an Oracle, error nu
and to write a specific handler

ber. That allowsyou to refer to any internal exception by name

RAISE_APPLICATION_ERROR
The procedure raise_application_error lets you issue user-defined error messages from

storedsubprograms. That way, you can report errors to your application and avoid returning
unhandledexceptions.

Using SQLCODE and SQLERRM
For internal exceptions, SQLCODE returns the number of the Oracle error. The number

that SQLCODEreturns is negative unless the Oracle error is no data found, in which case
SQLCODE returns +100.SQLERRM returns the corresponding error message. The message
begins with the Oracle error code.

STUDY MATERIAL FOR BCA
RDBMS

SEMESTER - V, ACADEMIC YEAR 2020-2021

Page 58 of 67

Unhandled Exceptions
PL/SQL returns an unhandled exception error to the host environment, which determines the
outcome.
When Others
It is used when all exception are to be trapped.

CURSORS
Oracle allocates an area of memory known as context area for the processing of SQL

statements. Thepointer that points to the context area is a cursor.

Merits
1] Allowing to position at specific rows of the result set.2] Returning one row or block of rows
from the current position in the result set.3] Supporting data modification to the rows at the
current position in the result set.

TYPES
1] STATIC CURSOR
SQL statement is determined at design time.
A] EXPLICIT CURSOR

Multiple row SELECT statement is called as an explicit cursor.To execute a multi-row
query, Oracle opens an unnamed work area that stores processinginformation. To access the
information, you can use an explicit cursor, which names the workarea.Usage - If the SELECT
statement returns more that one row then explicit cursor should beused.Steps

 Declare a cursor
 Open a cursor
 Fetch data from the cursor
 Close the cursorEXPLICIT CURSOR ATTRIBUTES
 %FOUND (Returns true if the cursor has a value)
 %NOTFOUND (Returns true if the cursor does not contain any value)
 %ROWCOUNT (Returns the number of rows selected by the cursor)
 %ISOPEN (Returns the cursor is opened or not)

CURSOR FOR LOOP
The CURSOR FOR LOOP lets you implicitly OPEN a cursor, FETCH each row returned by

the queryassociated with the cursor and CLOSE the cursor when all rows have been processed.

SYNTAX
FOR <RECORD NAME> IN <CURSOR NAME> LOOPSTATEMENTSEND LOOP;To refer an

element of the record use <record name. Column name>

Parameterized Cursor

STUDY MATERIAL FOR BCA
RDBMS

SEMESTER - V, ACADEMIC YEAR 2020-2021

Page 59 of 67

R

A cursor can take parameters, which can appear in the associated query wherever
constants canappear. The formal parameters of a cursor must be IN parameters. Therefore,
they cannot returnvalues to actual parameters. Also, you cannot impose the constraint NOT
NULL on a cursor parameter.The values of cursor parameters are used by the associated query
when the cursor is opened.

B .IMPLICIT CURSOR
An IMPLICIT cursor is associated with any SQL DML statement that does not have

aexplicitcursor associated with it.
This includes:

• All INSERT statements
• All UPDATE statements
• All DELETE statements
• All SELECT ..

INTO statementsIMPLICIT CURSOR ATTRIBUTES"SQL%FOUND (Returns true if the DML
operation is valid)"SQL%NOTFOUND (Returns true if the DML operation is
invalid)"SQL%ROWCOUNT (Returns the no. of rows affected by the DML operation)

2] DYNAMIC CURSOR
Dynamic Cursor can be used along with DBMS_SQL package .A SQL statement is dynamic, if it
isconstructed at run time and then executed.

3] REF CURSOR
Declaring a cursor variable creates a pointer, not an item. In PL/SQL, a pointer has data

type REF X,where REF is short for REFERENCE and X stands for a class of objects. Therefore, a
cursor variable hasdata type EF CURSOR.To execute a multi-row query, Oracle opens an
unnamed work area that stores processing information.To access the information, you can use
an explicit cursor, which names the work area.

ORACLE 9IAdvanced Explicit Cursor Concepts
1. FOR UPDATE WAIT Clause
Lock the rows before the update or delete.
Use explicit locking to deny access for the duration of a transaction.SyntaxCursor eipc1 is select
* from emp for update [ofcolumn_reference] [NOWAIT]Column ReferenceIt is column in the
table against which the query is performed[A list of column may also be used]NOWAITReturns
an Oracle Error if the rows are locked by another session.• The SELECT... FOR UPDATE
statement has been modified to allow the user to specify howlong the command should wait if
the rows being selected are locked.• If NOWAIT is specified, then an error is returned
immediately if the lock cannot be obtained.

Example of Using FOR UPDATE WAIT Clause
1. SELECT * FROM EMPLOYEES WHERE DEPARTMENT_ID = 10 FOR UPDATE WAIT 20
2. DECLARECURSOR EMP_CURSOR ISSELECT EMPNO, ENAME, DNAME FROM EMP,DEPT

STUDY MATERIAL FOR BCA
RDBMS

SEMESTER - V, ACADEMIC YEAR 2020-2021

Page 60 of 67

WHEREEMP.DEPTNO=DEPT.DEPTNO AND EMP.DEPTNONO=80FOR UPDATE OF SALARY
NOWAIT;[Retrieve the Employees who work in department 80 and update their Salary

2. The WHERE CURRENT OF Clause
Use cursors to update or delete the cursor row.
Include the FOR UPDATE clause in the cursor query to lock the row first.
Use the WHERE CURRENT OF clause to refer the current row from an explicit
cursor.SyntaxWHERE CURRENT OF <cursor_name>Cursor_Name -It is the name of a declared
cursor. [The cursor have beendeclared with the FOR UPDATE clause]

Example of Using FOR WHERE CURRENT OF Clause
1. DECLARECURSOR EMP_CURSOR IS SELECT EMPNO, ENAME, DNAME FROM E.EMP,D.DEPT
WHEREEMP.DEPTNO=DEPT.DEPTNO AND EMP.DEPTNONO=80 FOR UPDATE OF SALARY
NOWAIT;BEGINFOR I IN EMP_CURSOR;LOOPIF I.SAL<5000 THENUPDATE EMP SET
SALARY=I.SAL*1.10 WHERE CURRENT OF EMP_CURSOR;END IF;END LOOP;END;

The Example loops through each employee in department 80, and checks whether the
salary isless than 5000.If salary is less than , the salary is raised by 10%. The where current of
clause in theUPDATE statement refers to the currently fetched records.]

3. CURSORS WITH SUB QUERIES
Sub queries are often used in the WHERE clause of select statement. It can be used toFROM
clause, creating a temporary data source for the query.
DECLAREbonusREAL;BEGINFORemp_rec IN (SELECT empno, sal, comm FROM emp)LOOPbonus
:= (emp_rec.sal * 0.05) + (emp_rec.comm * 0.25);INSERT INTO bonuses VALUES
(emp_rec.empno, bonus);END LOOP;COMMIT;END;

Modify routines online without interfering with other users
Modify one routine to affect multiple applications
Improved data security and integrity

PL/SQL COMPOSITE DATA TYPES
PL/SQL data types has been broadly classified in two category - Scalar data types and

Composite data types. In previous post we discussed about scalar data type which cover
NUMBER , CHAR, VARCHAR2, LONG, etc types.

To discuss one of the composite types in PL/SQL - collections and in next post another
composite type - Record will be discussed.

A composite data type stores values that have internal components and internal
components can be either scalar or composite.Internal components can be of same data type
and different data type. PL/SQL allows us to define two kinds of composite data types :

Collection
The internal components must have the same data type and we

can access each

element of a collection variable by its unique index, with this syntax: variable_name(index).

STUDY MATERIAL FOR BCA
RDBMS

SEMESTER - V, ACADEMIC YEAR 2020-2021

Page 61 of 67

a

Record
The internal components can have different data types and we can access each field of a

record variable by its name, with this syntax: variable_name.field_name. Detailed discussion of
Records in PL/SQL.

Collections in PL/SQL
Oracle provides three types of collections.
Index-by Table(associate array),
Nested Tables, and
VARRAY.

VARRAY:
It is variable-size array and element counts in it can vary from 0 to declared maximum

size.Characteristics of VARRAY:
Elements of VARRAY can be accessed by variable_name(index).VARRY index starts from

1 (lowest_index = 1) and it can go up to maximum size of VARRAY.

As contrast to associative array, it can be persisted in database table and order of
elements (indexes and element order) remain stable.

VARRAY has constructor support as contrast to Associative array that does not support
collection constructor. A collection constructor is a system-defined function with the same
name as a collection type,which returns a collection of that type. Syntax of a constructor
invocation is:Collection_type ([values,...]), values are optional. If no value is passed constructor
returns emplty collection.

VARRAY is stored as a single object in a column in database table.(if size of object is
more than 4KB then it is stored separately but in same namespace). Following diagram depicts
how VARRAY is stored in datab se table: Highlighted column refers to VARRAY type and stored
in database column as other scalar type.

VARRAY creation and its initialization:-
Syntax of VARRAY creation is as follows - varray_type_def with collection
-- size_limit: upper limit of VARRAY(maximum that many elements can be stored)
TYPE typeIS { VARRAY | [VARYING] ARRAY } (size_limit)
OF data type[NOT NULL]
Consider following sample program which creates a VARRY to store address information of
employees and initialize it with constructor. Here ADDRESS is VARRAY type with upper limit of
container 3 and using constructor collection of type ADDRESS created
emp_address.

DECLARE
-- VARRAY type declaration of type VARCHAR, upperlimit 3
TYPE ADDRESS IS VARRAY(3) OF VARCHAR2(45);

is returned to

STUDY MATERIAL FOR BCA
RDBMS

SEMESTER - V, ACADEMIC YEAR 2020-2021

Page 62 of 67

A
o

n

e

-- varray variable initialized with constructor of type ADDRESS
emp_address ADDRESS := ADDRESS('HYD,IND', 'NY,USA','BANG,IND');
BEGIN

DBMS_OUTPUT.PUT_LINE('VARRAY elements count is '
|| emp_address.COUNT);

DBMS_OUTPUT.PUT_LINE('Address display - Iteration over VARRAY');
--emp_address.FIRST= 1 and emp_address.LAST = 3
FOR i IN emp_address.FIRST..emp_address.LAST LOOP
DBMS_OUTPUT.PUT_LINE(i || '. address is ' || emp_address(i));

END LOOP;
DBMS_OUTPUT.PUT_LINE('Modify emp_address VARRAY ');

emp_address(1) := 'Sydeny, AUS';
DBMS_OUTPUT.PUT_LINE('Accessing VARRAY based on index,modified addr

||emp_address(1)); -- notice modified value here.
--emp_address.DELETE(2);--Delete operation on VARRAY is not allowed.

ss is '

END;
==============Sample output==================
VARRAY elements count is 3
Address display - Iteration over VARRAY
1. address is HYD,IND
2. address is NY,USA
3. address is BANG,IND
Modify emp_address VARRAY
Accessing VARRAY based on index,modified address is Sydeny, AUS
===

Where do we use VARRAY:- If we have prior info of maximum number of elements and
we want sequential access of c llection. It is not not good idea to use VARRAY when collection
size is very large, because VARRAY is retrieved at once from database.

Nested Tables:
It is a table (with rows and columns) that is stored in database table as data of a column

in no particular order.When that table is retrieved form database in PL/SQl context, PL/SQL
indexes all rows starting from 1 and based on index we can access each row of nested table
using method: nested_table_var(index). Following diagram shows how Nested tables is stored
in database table. Highlighted inner table in CUSTOMER_DETAILS column refers to Nested table
type and stored as part of column data.

Nested table creation and its initialization:- Syntax of Nested table creation is as follows,
(nested_table_type_def with collection) :

TYPE type IS {TABLE OF data type[NOT NULL] }
Consider following scenario to understand how Nested table type is created in and stored in
database.Lets say we have an Customer_detail_objectisa Object TYPE and it stores customer

STUDY MATERIAL FOR BCA
RDBMS

SEMESTER - V, ACADEMIC YEAR 2020-2021

Page 63 of 67

details and nested table is
customer_detail_object.

collection of that object- each row of nested table is

For the time being just assume it is a container which can store different data types.
Follow following steps and execute query in sequence :

Step 1: Create Object type having fields CustID, cust_name, cust_address, execute below query
to create Object named Customer_detail_object.
--create ObjectCustomer_detail_object : Created in schema level.
create type Customer_detail_object as object
(
CustIDNUMBER(14),
cust_namevarchar2(25),
cust_addressvarchar2(100)
);

Step 2: Now nested
Customer_detail_object.888888

table type CUSTOMER_DETAILS of object type

--Create TABLE of object Customer_detail_object: Created in schema level
create type CUSTOMER_DETAILS as Table of Customer_detail_object;

Step 3: Create a table, PRODUCTS_CUSTOMRS_DETAILS, in database with a fields of type
CUSTOMER_DETAILS (while creating table we specify about CUSTOMER_DETAILS as nested
table).
--create table in database , NESTED TABLE clause is mandatory to append
create table PRODUCTS_CUSTOMRS_DETAILS
(
product_id number(5),
product_namevarchar2(30),
CUSTOMER_DETAILS HR.CUSTOMER_DETAILS
) NESTED TABLE CUSTOMER_DETAILS STORE AS CUSTOMRS_OBJECTS;

Step 4: Insert rows in table. We have created two rows and each row has CUSTOMER_DETAILS
table with two rows. If constructor used is empty, nested table will be empty not NULL.
--insert data into table

insert into PRODUCTS_CUSTOMRS_DETAILS
values(1,'P1',
CUSTOMER_DETAILS(
Customer_detail_object(1,'RSQ','BANG,INDIA'),
Customer_detail_object(2,'RTA','AUSTIN,USA')
));

insert into PRODUCTS_CUSTOMRS_DETAILS
values(2,'P2',
CUSTOMER_DETAILS(
Customer_detail_object(1,'RSQ','BANG,INDIA'),

STUDY MATERIAL FOR BCA
RDBMS

SEMESTER - V, ACADEMIC YEAR 2020-2021

Page 64 of 67

s

Customer_detail_object(2,'BAC','NY,USA')
));

commit;
Now we have completed set-up to query database and see the stored result from PL/SQL

program.
declare
customerDetails_Tab CUSTOMER_DETAILS;
begin
--insert a record in database table with nested table data
insert into products_CUSTOMRS_DETAILS
values(3,'P3',
CUSTOMER_DETAILS(
Customer_detail_object(1,'ACV','HYD,INDIA'),
Customer_detail_object(2,'ERT','AUSTIN,USA')
));

commit;
--select record and store nested table value in customerDetails_Tab

select CUSTOMER_DETAILS into customerDetails_Tab
fromproducts_CUSTOMRS_DETAILS
whereproduct_id = 1;
--update nested table column in database

updateproducts_CUSTOMRS_DETAILS set CUSTOMER_DETAILS = customerDetails_Tab
whereproduct_id = 3;
commit;
end;

Here we played around with DML statements and treating inner table as atomic value(Insert,
select or update nested table in column).
We can deal with individual row of nested table using TABLE command as follows:
select * from table (select CUSTOMER_DETAILS from
products_CUSTOMRS_DETAILS where product_id = 1);
Above query executes and it di plays nested tables corresponding to row with product_id = 1,
as follows :
Where do we use Nested tables:- Nested table finds it's usage when index values are not
consecutive, maximum number of elements storage is not fixed (as contrast to VARRAY).
- Nested table finds extensive use when we want to access refcursor output in SQL and PL/SQL
table structure cannot be directly be used SQL. So, a table of SQL object is created at schema
level.
create or replace type t_emptype as table of emptype; -- emptype is SQL Object not plsql
record
How internal storage of VARRAY and Nested table type are different ?VARRY type are stored as
part of database table(as column data) until its size reaches 4KB(then it is stored separately
from database table), however in Nested table data is stored in a separate store table, a
system-generated database table.When we access Nested table database joins this system

STUDY MATERIAL FOR BCA
RDBMS

SEMESTER - V, ACADEMIC YEAR 2020-2021

Page 65 of 67

table with Nested table that's why nested table is suitable for querying and updating(restricted
to part of it at a time).

Sample PL/SQL program

PL/SQL Program for Prime Number
declare

n number;
i number;
flag number;

begin
i:=2;
flag:=1;
n:=&n;
fori in 2..n/2
loop

if mod(n,i)=0
then

end if;
end loop;
if flag=1
then

flag:=0;
exit;

end;

else

end if;

dbms_output.put_line('prime');

dbms_output.put_line('not prime');

Output
Enter value for n: 12
old 9: n:=&n;
new 9: n:=12;
not prime

PL/SQL Program to Print Table of a Number
declare

n number;
i number;

begin
n:=&n;
fori in 1..10
loop

STUDY MATERIAL FOR BCA
RDBMS

SEMESTER - V, ACADEMIC YEAR 2020-2021

Page 66 of 67

end;
Output

dbms_output.put_line(n||' x '||i||' = '||n*i);
end loop;

Enter value for n: 5
old 6: n:=&n;
new 6: n:=5;
5 x 1 = 5
5 x 2 = 10
5 x 3 = 15
5 x 4 = 20
5 x 5 = 25
5 x 6 = 30
5 x 7 = 35
5 x 8 = 40
5 x 9 = 45
5 x 10 = 50

Pl/SQL Program for Palindrome Number
A number is called palindrome number if its reverse is equal to itself. For example 12321 is
palindrome while 123 is not palindrome.

declare
n number;
m number;
rev number:=0;
r number;

begin
n:=12321;
m:=n;
while n>0
loop
r:=mod(n,10);
rev:=(rev*10)+r;
n:=trunc(n/10);
end loop;
if m=rev
then
dbms_output.put_line('number is palindrome');
else
dbms_output.put_line('number is not palindrome');
end if;

end;

STUDY MATERIAL FOR BCA
RDBMS

SEMESTER - V, ACADEMIC YEAR 2020-2021

Page 67 of 67

Output

number is palindrome

	UNIT - I INTRODUCTION
	ENTITY (ROW):
	CELL:
	ENTITY SET (TABLE):
	DATABASE:
	DATABASE MANAGEMENT SYSTEM(DBMS):
	RELATIONAL DATABASE MANAGEMENT SYSTEM(RDBMS):
	SQL(STRUCTURED QUERY LANGUAGE):
	DDL (DATA DEFINITION LANGUAGE):
	DML (data manipulation language)
	DCL (DATA CONTROL LANGUAGE):
	DATA TYPES IN ORACLE:
	CHAR(SIZE):
	NUMBER(P,S):
	LONG:
	DATE:
	RAW:
	LONG RAW:
	VARIOUS COMMONLY USED DDL COMMANDS USED IN ORACLE: CREATE TABLE:
	SYNTAX:
	EXAMPLE:
	ALTER TABLE:
	SYNTAX: (1)
	EXAMPLE: (1)
	SYNTAX :
	EXAMPLE :
	LIMITATIONS OF ALTER TABLE OMMAND:
	VARIOUS COMMONLY USED DML COMMANDS USED IN ORACLE: INSERT:
	SYNTAX: (2)
	EXAMPLE: (2)
	To feed values in limited columns, we must mentionfield names:
	EXAMPLE
	To feed values in all the columns, then mentioning column names is optional.
	UPDATE
	SYNTAX
	EXMPLE
	SYNTAX (1)
	EXAMPLE (1)
	DELETE
	SYNTAX (2)
	EXAMPLE (2)
	SYNTAX (3)
	EXAMPLE (3)
	SELECT
	SYNTAX (4)
	EXAMPLE (4)
	SYNTAX (5)
	EXAMPLE (5)
	SYNTAX (6)
	EXAMPLE (6)
	SYNTAX (7)
	EXAMPLE (7)
	SYNTAX (8)
	EXAMPLE (8)
	SYNTAX (9)
	EXAMPLE (9)
	VARIOUS COMMONLY USED DCL COMMANDS USED INORACLE (SECURITY MANAGEMENT IN ORACLE) :-
	GRANT COMMAND:
	EXAMPLE (10)
	EXAMPLE (11)
	REVOKE COMMAND:
	SOME COMMONLY USED COMMANDS:
	OPERATORS IN ORACLE:-
	EXAPMLE:-
	SYNTAX:-
	AGGREGATE FUNCTIONS/GRO P FUNCTIONS:-

	UNIT - II CONSTRAINTS IN ORACLE
	Displaying Table Information
	What are Oracle Data Dictionaries?
	Altering an Existing Table
	GROUPING:-
	SUBQUERIES:-
	SET OPERATORS

	UNIT – III JOINS
	VIEWS:-
	TOO MANY INDEXES ON A TAB E:-
	SEQUENCES:-
	Oracle Data Types
	Database System Architectures
	Advantages:
	Disadvantages:
	Advantages: (1)
	Disadvantages: (1)
	Advantages of client/server:
	Disadvantages of client/server:
	Advantages: (2)
	Disadvantages: (2)

	UNIT - IV FUNDAMENTALS OF PL/SQL
	What is PL/SQL Data types?
	Syntax Explanation:
	BOOLEAN Data Type:
	Declarations
	ANONYMOUS PL/SQL BLOCK.
	ATTRIBUTES
	%TYPE
	%ROWTYPE
	Control Structures in PL/SQL
	Testing Conditions: IF and CASE Statements
	Using the IF-THEN Statement
	Oracle PL/SQL Insert, Update, Delete & Select Into [Example]
	Data Insertion
	Autonomous Transaction in Oracle PL/SQL: Commit, Rollback

	UNIT – V EXCEPTION
	Exception-Handling Syntax
	Predefined Exceptions
	User-defined Exception
	Important points to note in Exception
	Predefined Exceptions (1)
	User – Defined exceptions
	CURSORS
	PL/SQL COMPOSITE DATA TYPES
	Collection
	Record

